

Phibro-Tech, Inc.

April 2004 Quarterly Sampling Report Santa Fe Springs, California

July 19, 2004

Prepared for:

Phibro-Tech, Inc. (PTI) 8851 Dice Road Santa Fe Springs, California 90670

Prepared by:

CDM

18581 Teller Avenue, Suite 200 Irvine, California 92612

Project No. 2279-36882.REP.REPT

Phibro-Tech, Inc.

April 2004 Quarterly Sampling Report Santa Fe Springs, California

July 19, 2004

Prepared for:

Phibro-Tech, Inc. (PTI) 8851 Dice Road Santa Fe Springs, California 90670

Prepared by:

CDM

18581 Teller Avenue, Suite 200 Irvine, California 92612 The information contained in the April 2004 Quarterly Sampling Report for the Phibro-Tech, Inc. Santa Fe Springs, California facility has received appropriate technical review and approval. The activities outlined in the report were performed under the supervision of a Registered Geologist.

i

4399

Reviewed and Approved by SED GE

Sharon Wallin, R.G. Project Manager

July 27, 2004

Mr. Ron Leach USEPA, Region IX (H-4-4) 75 Hawthorne Avenue San Francisco, CA 94105

Dear Mr. Leach:

Enclosed is the April 2004 Quarterly Groundwater Monitoring Report for Phibro-Tech, Inc., Santa Fe Springs' facility. The Report includes analytical results and physical measurements obtained April 21 and 22, 2004 from selected monitoring wells at Phibro-Tech. Since this Report includes portions of the RCRA Facility Investigation (USEPA Docket No. RCRA 09-89-0001), this Report will also be submitted to the EPA.

Based on a technical review by our consultant, Camp Dresser and McKee, a groundwater-monitoring program is included which was implemented beginning with the April 1991 groundwater monitoring. Additional wells and parameters changed at the request of EPA are included in this Groundwater Monitoring Report. The changes are described in the Report.

Please contact me if you have any questions or comments concerning this report.

Sincerely,

Marty Voss EHS Manager

Enclosure

cc: see following page

-2-Quarterly Ground Water Report Ltr July 2004

cc: Steve Cohen

Phibro-Tech, Inc. One Parker Plaza Fort Lee, NJ 07024

Sharon Wallin, Project Manager (no enclosure) Camp Dresser & McKee Inc. 18581 Teller Avenue, Suite #200 Irvine, CA 92612

Kathy San Miguel Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Karen Baker Permitting Division Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Contents

Section 1	Intro	duction		1-1
Section 2			ell Sampling	
	2.1		ing Procedure	
		2.1.1	Organic Vapor Check	2-2
		2.1.2	Detection of Immiscible Layers	2-3
		2.1.3	Static Water Level/Well Depth Measurement	
		2.1.4	Purge Volume Determination/Well Evacuation	
		2.1.5	Sample Collection and Handling	2-4
	2.2	Equip	ment Decontamination Procedures	2-5
		$2.\bar{2}.\bar{1}$	Sampling Pump/Lines Decontamination	2-5
		2.2.2	Accessory Sampling Equipment Decontamination	
Section 3	Labor	ratory Te	esting	3-1
Section 4	Quali	ty Assur	ance	4-1
	4.1	Field (Quality Assurance	4-1
		4.1.1	Duplicate Samples	4-1
		4.1.2	Equipment Blanks	
		4.1.3	Decontamination Water Blank	4-2
		4.1.4	Travel Blanks	4-2
		4.1.5	Sample Control	4-2
	4.2	Labora	atory Quality Assurance	4-2
Section 5	Grou	ndwater	Elevation	5-1
Section 6	Grou	ndwater	Quality	6-1
	6.1	Chlori	nated VOCs	6-1
	6.2	Non-C	Chlorinated VOCs	6-2
	6.3	Metals	s and pH	6-4
Section 7	Statis	tical Eva	luation	7-1
	7.1	Deterr	mination of Background Prediction Interval	7-1
	7.2		arison of Background and On-site Wells	
Section 8	Asses		f Quarterly Groundwater Monitoring Program Status	
Cootion 0			,	

Appendices

Appendix A	General Analytical Detection Limits
Appendix B	Historical Sampling Results
Appendix C	Del Mar Analytical Laboratory Reports
Appendix D	Completed COC Forms
Appendix E	Background Groundwater Concentrations
Appendix F	Statistical Analysis

List of Figures

Figure 2-1	Monitoring Well Location Map	2-7
Figure 5-1	Groundwater Elevation Contours - Shallow Wells, April 2004	5-3
Figure 5-2	Groundwater Elevations Contours - Deep Wells, April 2004	5-4
Figure 5-3	Shallow Well Groundwater Hydrograph	5-5
Figure 5-4	Deep Well Groundwater Hydrograph	5-6
Figure 6-1	TCE Concentrations - Shallow Wells, April 2004	6-6
Figure 6-2	TCE Concentrations - Deep Wells, April 2004	6-7
Figure 6-3	Total BTEX Concentrations - Shallow Wells, April 2004	6-8
Figure 6-4	Hexavalent Chromium Concentrations - Shallow Wells, April 200	04.6-9
Figure 6-5	Hexavalent Chromium Concentrations vs. Groundwater	
	Elevations MW-04	6-10
Figure 6-6	Total Chromium Concentrations - Shallow Wells, April 2004	6-11
Figure 6-7	Total Chromium Concentrations vs. Groundwater Elevations	
	MW-04	6-12
Figure 6-8	Cadmium Concentrations - Shallow Wells, April 2004	6-13
Figure 6-9	Cadmium Concentrations vs. Groundwater Elevations MW-04	6-14
Figure 6-10	Copper Concentrations - Shallow Wells, April 2004	6-15

List of Tables

Table 2-1	Groundwater Monitoring Program Summary	2-8
Table 4-1	Groundwater Analytical Results - April 2004 Field Quality	
	Control Sample Analytical Summary	4-3
Table 5-1	Groundwater Elevation Data	5-7
Table 6-1	Groundwater Analytical Results -Volatile Organic Compounds	
	(VOCs)	6-16
Table 6-2	Groundwater Analytical Results - Metals and pH	6-20
Table 7-1	Comparison of Background and On-Site Wells Quarterly Data:	
	January 1989 to April 2004	7-3

Section 1 Introduction

This report summarizes the April 2004 quarterly groundwater monitoring event at the Phibro-Tech, Inc. (PTI), Santa Fe Springs, California facility (formerly referred to as Southern California Chemical). This report presents the second quarter groundwater monitoring results for 2004. Contained herein are the results of laboratory analyses of groundwater samples and water level measurements obtained on April 20 and 21, 2004.

The purpose of this monitoring program, which began in March 1985, is to determine if compounds of concern detected in groundwater beneath the site are migrating from the facility. This objective is accomplished through the comparison of background or up gradient water quality and groundwater quality beneath the site. Statistically significant increases in contaminant concentrations between known areas of groundwater contamination and down gradient wells would indicate that migration is occurring. In the past, statistical analysis was performed annually and was included in the July quarterly monitoring reports. Statistical analysis is now conducted for each sampling event and is included in the corresponding monitoring report.

To date, three types of contaminants have generally been detected in the groundwater beneath the site: dissolved metals (primarily chromium and cadmium), non-chlorinated aromatic volatile organic compounds (VOCs, primarily benzene, toluene, ethylbenzene, and total xylenes [BTEX]), and chlorinated VOCs (primarily trichloroethene [TCE]). Groundwater modeling completed in January 1993, and groundwater monitoring conducted since 1985, indicates that the purgeable aromatic plume originated up gradient from the PTI facility. The distribution of TCE appears to be ubiquitous, although somewhat elevated concentrations exist in the vicinity of Pond 1, a RCRA-regulated former surface impoundment area. Elevated concentrations of soluble metals have also been consistently detected in the vicinity of Pond 1. Soluble metal concentrations at the down gradient property line and in deeper wells, however, continue to be near or below detection.

Approximately 19 years of quarterly groundwater monitoring at the PTI facility has indicated that dissolved hexavalent chromium is not migrating. During groundwater modeling performed by CDM in 1993, a retardation factor of 50 was selected based on the observed distribution of hexavalent chromium in the groundwater. Previous data analysis indicated that the most likely basis for the relatively high (but within the range of reasonable and appropriate values) retardation factor would be the existence of reducing conditions in the saturated zone, promoting the chemical reduction of hexavalent chromium to trivalent chromium (Cr 3+). Trivalent chromium, having a very low solubility in water, tends to precipitate and sorb to the soil, inhibiting migration. During four quarterly sampling events conducted in 1996, additional laboratory analyses (iron and redox potential) were performed on groundwater samples collected from wells MW-04, MW-09, and MW-14S. These additional data, along with the pH, total chromium, and hexavalent chromium data, provided a better

understanding of the mechanisms controlling chromium migration in groundwater underlying the facility and supported the above hypothesis. Please refer to Section 6.4 (Chromium Fate and Transport) of the October 1996 Quarterly Sampling Report for a detailed discussion of this conclusion.

In addition to the data obtained during the April 2004 sampling, this report contains tables listing detection limits of the parameters analyzed (Appendix A). Historic sampling results starting in January 1989 are presented in Appendix B. For ease of review, analytical results for the current sampling event and the previous four quarters are also summarized in Section 6, Tables 6-1 and 6-2. Copies of the original laboratory results for the April 2004 sampling event are included in Appendix C, and chain-of-custody records are included in Appendix D. Appendix E contains background groundwater concentrations of contaminants for the Santa Fe Springs area for the year 2001. Appendix F contains the complete quarterly statistical analysis.

Section 2 Monitoring Well Sampling

CDM personnel conducted groundwater sampling of existing on-site monitoring wells on April 20 and 21, 2004. Field activities were performed in general accordance with the groundwater sampling protocols as outlined in Section 4.3.3 of the approved RCRA Facility Investigation (RFI) Work Plan (CDM, June 1990). Prior to the submittal of the RFI Work Plan for regulatory agency review and approval, the J.H. Kleinfelder and Associates (Kleinfelder) Quality Assurance Project Plan (QAPP, May 1988) was used as the primary groundwater sampling guidance document. Proposed deviations from the RFI Work Plan (i.e., well purging using a submersible pump and sample collection using disposable bailers) were discussed in October 1994 correspondence to the DTSC. These changes were implemented during the October 1994 and all subsequent sampling events.

Twenty-four monitoring wells exist on-site. The locations of these wells are shown on Figure 2-1. One well, MW-06A, historically has not been sampled for groundwater analysis because it is screened in the Gage Aquifer, which is dry below the PTI facility. The remaining wells are screened in the Hollydale Aquifer; 16 in the upper portion and 7 in the lower portion of the aquifer.

Beginning in February 1985, Kleinfelder initiated groundwater sampling, utilizing monitoring wells MW-01 through MW-06B. Six additional wells (MW-04A and MW-07 through MW-11) were installed at the site in July 1985, thereby increasing the total number of active wells to 12. Quarterly sampling of the 12 wells was initiated in March 1986.

Commencing with the January 1989 sampling event, CDM has been responsible for all groundwater-monitoring activities at the facility. Ten wells (MW-01D, MW-06D, MW-12S, MW-12D, MW-13S, MW-13D, MW-14S, MW-14D, MW-15S and MW-15D) were installed as part of the first phase of the RFI program and were first sampled during the October 1990 sampling round.

Groundwater analysis of the 22 wells that existed during the RFI program from October 1990 to January 1991, indicated that the number of wells sampled could be reduced and yield comparable results to sampling all the wells. During sampling rounds in April, July, and October 1991, and in January 1992, 11 wells were sampled. Wells screened in the upper portion of the Hollydale Aquifer included MW-01S, MW-03, MW-04, MW-07, MW-09, MW-11, MW-14S, and MW-15S, and wells screened in the lower portion of the Hollydale Aquifer included MW-01D, MW-04A, and MW-15D.

Beginning with the April 1992 sampling round, three additional wells (MW-06B, MW-06D, and MW-16) were included in the quarterly monitoring program, bringing the total number of sampled wells to 14. Well MW-16, constructed in March 1992 as part of the Phase II RFI program, was sampled for the first time during the April 1992

sampling round. The same 14 wells have been sampled during all subsequent sampling rounds. On several occasions, additional laboratory analyses have been performed and additional wells included in quarterly sampling, at the request of the U.S. EPA. Additional analyses and wells are noted in the comment column of Table 2-1, which summarizes the groundwater-monitoring program at the site.

In April 2000, the frequency of groundwater monitoring was reduced from quarterly to semi-annually. In April 2001, as requested by the California Department of Toxic Substances Control (DTSC), quarterly sampling was re-implemented.

The 14 wells currently included in quarterly sampling are MW-01S, MW-01D, MW-03, MW-04, MW-04A, MW-06B, MW-06D, MW-07, MW-09, MW-11, MW-14S, MW-15S, MW-15D, and MW-16. Ten shallow and four deep wells are analyzed for pH by method 150.1, metals (cadmium [Cd], chromium [Cr], and copper [Cu]) using EPA Method 6010A; hexavalent chromium (EPA Method 7199), and volatile organic compounds (EPA Method 8260B). During the July 2001 and October 2001 sampling events, DTSC requested that samples from wells MW-01S, MW-04, MW-09 and MW-11 be analyzed for 1,4-dioxane. In late 2002, DTSC requested that PTI conduct limited annual analyses for the Appendix IX suite of parameters. The four wells designated for Pond 1 monitoring (CDM, March 1996) (MW-04, MW-07, MW-11, and MW-14S) were selected for annual Appendix IX sampling and analysis. A detailed listing of analytical parameters per sampling event is provided in Table 2-1.

The 14 on site wells were purged and sampled in the following order: MW-01D, MW-01S, MW-03, MW-06D, MW-06B, MW-07, MW-14S, MW-04A, MW-04, MW-15D, MW-15S, MW-16, MW-09, and MW-11. CDM contracted Blaine Tech Services Inc. to assist with well gauging, purging, and sampling. A CDM geologist was present during sampling.

2.1 Sampling Procedure

Field sampling was conducted in general accordance with procedures detailed in the RFI Work Plan. Sampling practices included the following: measure static water level and total depth of each well in order to calculate pre-sampling evacuation volumes, check for floating product and hydrocarbon vapors at each well, purge each well and collect a groundwater sample for laboratory analysis, decontaminate sampling equipment, and handle sample-filled containers in accordance with Section 4.3.3.5 of the RFI Work Plan.

2.1.1 Organic Vapor Check

Standard field procedures included checking the interior of each well with a photoionization detector (PID) (equipped with a 10.6 eV lamp) for the presence of organic vapors whenever the well casing was opened. With the sampling team members standing upwind of the well, the well cap was opened slightly, allowing for the insertion of the PID probe tip inside the well. Readings were monitored until they stabilized, which was usually at zero parts per million (ppm). The peak reading was

recorded in the field logbook. The cap was then removed and the well allowed to vent for a short period of time prior to measuring the static water level. The maximum PID readings taken during the collection of water level measurements are shown in Table 5-1 in Section 5.

2.1.2 Detection of Immiscible Layers

To detect the presence of floating, immiscible layers on top of the groundwater surface, a clear bailer was lowered approximately one-half the length of the bailer below the surface of the water of each sampled well. The bailer was removed from the well and its contents checked for immiscible layers or iridescence. The bailer was decontaminated and the sampling line discarded after each day. If immiscible fluids had been detected, a sample would have been collected for laboratory analysis of VOCs (EPA Method 8260B) and total petroleum hydrocarbons (California Department of Health Services [CA DHS] Method) using a new bailer. As in all previous quarterly groundwater sampling at the PTI facility by CDM, immiscible layers were not detected during the April 2004 sampling event.

2.1.3 Static Water Level/Well Depth Measurement

On April 20, 2004, the static water level at 23 of the 24 on-site wells was measured three times at each well location with a decontaminated electric water level indicator (sounder) prior to the initiation of on-site well pumping. The three measurements collected in each well were identical. The results of these measurements are shown in Table 5-1 and discussed in Section 5. One well (MW-06A) was dry, and MW-02 was not measured due to its proximity to MW-12S.

The water level in each well was also measured immediately prior to initiating well evacuation procedures for calculation of well purge volume. During measurement, the measuring (reference) point used was noted (i.e., the top of the steel casing), and the depth to water below the reference point was measured to the nearest 0.01 foot and recorded in the field logbook. Wellhead elevation data were used with depth to water measurements to calculate groundwater elevation at each well location.

The total depth of each well sampled was also measured with the sounder to the nearest 0.1 foot. The amount of fill material in the bottom of the well was calculated from well construction data and noted in the logbook. The sounder probe and line were decontaminated after each use.

2.1.4 Purge Volume Determination/Well Evacuation

Saturated casing volume was calculated at each well by using the depth to water and bottom sounding measurements obtained immediately prior to purging, to calculate the amount (height) of the saturated well casing. The inside diameter of the casing was then measured, and the following formula applied:

Volume = $\pi(radius^2)$ x height

A minimum of three saturated casing volumes of water were evacuated from each well prior to collecting a groundwater sample for laboratory analysis.

During the April 2004 sampling round, all 14 of the wells sampled were purged using a portable Grundfos 2-inch diameter variable-speed submersible pump, and each well was sampled using a new disposable bailer. In most cases, the pump was installed approximately five feet below the top of the water column, at approximately 60 feet below ground surface (bgs).

Field parameters were measured during well evacuation using multimeter and turbidity meter for all wells. These instruments were calibrated or field checked prior to use with standard solutions in accordance with manufacturer's directions. These instruments were used to determine the stability of discharge water field parameters prior to collection of a sample for laboratory analysis.

Periodically during well evacuation, the field parameters of the discharge water were measured and recorded in the logbook. The physical appearance of the water (turbidity, color, sediment content, etc.) was also noted and recorded. Initial field turbidity measurements generally ranged from 3 to greater than 1,000 NTU (nephelometric turbidity units) at the start of well evacuation. At the end of well evacuation, measurements were generally less than 10 NTU. Higher turbidity at the start of purging seems to be related to agitating the water column and re-suspending material from the bottom of the well during pump installation. After a minimum of three saturated casing volumes of water were evacuated from each well and the field parameters stabilized (change between readings of less than 5 to 10 percent), a sample for laboratory analysis was collected.

All purge water collected from each well was contained in a 400-gallon truck-mounted portable tank and then discharged directly into the PTI facility's wastewater treatment system.

2.1.5 Sample Collection and Handling

Groundwater samples were collected with a new disposable bailer from the approximate middle of the perforated section, and poured directly into previously labeled sample bottles. During sample collection, the bailer was carefully and gently lowered past the air/water interface to minimize agitation and aeration of water during sample collection. The sample bottles were placed inside plastic zip-lock bags and then placed immediately into an ice-cooled chest. Prior to shipment, the bottles were cushioned with bubble wrap or plastic bags to avoid breakage. Samples collected for total metals analysis were field filtered using a 0.45-micron filter. A volume of groundwater equal to two times the capacity of the filtering device was passed through the filter and discarded prior to filtering each sample for total dissolved metals (Cd, Cu, and Cr) analysis. Filters were discarded after each use.

The April 2004 groundwater samples were collected for laboratory analysis of the following parameters:

- Volatile Organic Compounds by EPA method 8260
- Metals (Cd, Cu, and Cr) EPA method 6010
- Hexavalent Chromium (Cr+6) EPA method 7199
- pH by EPA Method 150.1

Groundwater sample bottles were numbered using the following format:

PTI-MW01S-060

Where:

PTI - designates site acronym

MW01S - designates monitoring well (MW) location number

EB - designates equipment blank sample

TB - designates travel blank sample

of designates sequential sampling event number

This was the 60th round of sampling conducted by CDM, however, due to a previous labeling inconsistency, a 061 sequence number was assigned to all groundwater samples collected during this round. Sample label information included date and time of sampling, CDM sample number, and analytical parameters.

Chain-of-custody forms that indicated the label information as well as the responsible person during each step of the transportation process accompanied all filled sample containers that were collected from each well. All samples collected during this sampling event were sent by courier to Del Mar Analytical in Irvine, California on the day that they were collected, and a copy of the chain-of-custody form for that day was retained by CDM field personnel. Copies of completed chain-of-custody forms are included in Appendix D. The laboratory was notified at the time of delivery that one or more hexavalent chromium (Cr+6) sample(s) were contained in the shipment to ensure that the samples would be analyzed within the prescribed 24-hour holding period.

2.2 **Equipment Decontamination Procedures**

The following sections describe the procedures utilized to decontaminate groundwater-sampling equipment.

2.2.1 Sampling Pump/Lines Decontamination

The submersible pump and discharge tubing used for well purging were decontaminated to reduce the possibility of cross-contamination between monitoring wells. The first step in the decontamination procedure was to submerge the pump into a 4-foot section of 4-inch diameter PVC pipe containing a soap (Alconox, a

laboratory-grade detergent) and water mixture. Then, at least five gallons of the solution were pumped through the system. The pump assembly was then submerged in another section of PVC pipe filled with tap water and at least 10 gallons were pumped through the system. The final decontamination step was accomplished by submerging the pump into another section of PVC pipe containing deionized (DI) water and pumping approximately five gallons of DI water through the system.

The exterior of the pump and discharge tubing was steam cleaned, as well as the exterior of the reel holding the tubing. The decontamination of the exterior pump line was performed over a stainless steel containment basin located on the groundwater-sampling rig. The spent water was recovered and discharged into the facility's wastewater treatment system.

2.2.2 Accessory Sampling Equipment Decontamination

Accessory sampling equipment such as the water level sounder was also decontaminated to minimize the possibility of cross-contamination between the monitoring wells. The sounder was decontaminated first by washing in a bucket of soap and water, followed by a tap water rinse, followed by a final DI water rinse. Bailers used to test for an immiscible layer were decontaminated and reused. The bailers and nylon rope that were used to sample wells were discarded immediately after use.

Table 2-1 PHIBRO-TECH, INC.

Groundwater Monitoring Program Summary

Sampling	Indicator	Trace	Hexavalent			Volatile	Appendix		
Event	Parameters	Metals	Chromium	Chloride	Nitrate	Organics	İX	1,4-Dioxane	Comments
3/85	Quad	Cu & Zn	X	Х	Х		-	may	Sampled wells MW-1, 2, 3, 4, 5, & 6B. Sulfide, nickel, copper and zinc requested by DOHS and RWQCB. Also Appendix III parameters and water quality parameters (see footnote).
7/85	Quad	Cd, Cr	Х		X				Sampled wells MW-4A, 7, 8, 10 and 11
3/86	Quad	Cu & Zn	Х	Х	Х	-			Sampled 12 wells (MW1, 2, 3, 4, 4A, 5, 6B, 7, 8, 9, 10 & 11). Also Appendix III parameters and water quality parameters (see footnote).
7/86, 9/86, 12/86	Quad	Cd, Cr, Cu, Zn	X	Х	Х	624	-		Sampled all 12 wells (as previous)
3/87	Quad	Cd, Cr, Cu, Zn	Х	X	X	601/602			Sampled 11 wells, <u>not 4A</u>
7/87, 10/87, 2/88	Quad	Cd, Cr, Cu, Zn	Х	X	Х	601/602			After July 1987, all 12 wells were sampled during each event
6/88	X (not Quad)	Cd, Cr, Cu, Zn	X	Х	Х	601/602			Performed statistical analysis (t-test) on Indicator Parameters (IPs).
9/88		Cd, Cr, Cu, Zn	Х	X	X	601/602		-	IPs & volatile organics from MW1, 2, 4A, 5, 6, 7 analyzed semi-annually in June/Dec.
1/89	Quad	Cd, Cr, Cu, Zn	Х	Х	Х	601/602		-	After Jan. 1989, volatile organics analyzed for all 12 wells.
4/89		Cd, Cr, Cu, Zn	Х	Х	Х	601/602			
7/89	Quad	Cd, Cr, Cu, Zn	Х	Х	X	601/602			Performed statistical analysis of Jan. thru July 1989 data (IPs, total and hexavalent chromium).
10/89	_	Cd, Cr, Cu, Zn	Х	х	Х	601/602			
1/90	Quad	Cd, Cr, Cu, Zn	Х	X	Х	601/602			
4/90		Cd, Cr, Cu, Zn	Х	X	Х	601/602			
7/90	Quad	Cd, Cr, Cu, Zn	Х	Х	Х	601/602		-	Performed statistical analysis of Jan. 1989 data (IPs, total and hexavalent chromium).
10/90		Cd, Cr, Cu, Fe, Ni, Pb, Zn	X	х	X	601/602	X		Sampled 22 wells, Appendix IX parameters analyses were performed on wells 4, 4A, 6B, 6D, 12S, 12D, 15S, 15D, plus a duplicate of 4.
1/91	Quad	Cd, Cr, Cu, Fe, Ni, Pb, Zn	Х	Х	Х	601/602			Sampled 22 wells.
4/91	pН	Cd, Cr, Cu	Х		-	601/602		-	New sampling program was initiated. Sampled 11 wells including wells MW-01S, MW-01D, -03, -04, -04A, -07, -09, -11, -14S, -15S, -15D.
7/91	pН	Cd, Cr, Cu	X			601/602			Performed annual statistical analysis.
10/91	pH	Cd, Cr, Cu	Х			601/602			
1/92	pH only (all) TOC only (MW-01 & -04)	Cd, Cr, Cu	Х		Ammonia as nitrogen (MW-01 & -04)	601/602			Ammonia & TOC analyses added at MW-01S and MW-04.
4/92	pH only TOC only (MW-01, -04, -09, -14S)	Cd, Cr, Cu-all see comments	Х		Ammonia as nitrogen (MW-01, -04, -09, -14S)	601/602	EDB (MW-04) TPH (W-16)		Sampled 14 wells including Wells MW-01S, -01D, -03, -04, -04A, -06B, -06D, -07, -09, -11, -14S, -15S, -15D, -16. Additional analysis as part of Phase II RFI; unfiltered metals on MW-04S and -14S. Pb and Ni on wells 1, 4, 14S, 15S, 16; Fe, Zn on well 16.
7/92	pH	Cd, Cr, Cu	X	-		601/602		-	Sampled 14 wells. Performed annual statistical analysis.
	1	,,	.,,						

Table 2-1 PHIBRO-TECH, INC.

Groundwater Monitoring Program Summary (continued)

Sampling Event	Indicator Parameters	Trace Metals	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Appendix IX	1,4-Dioxane	Comments
10/92	pН	Cd, Cr, Cu	Х		-	601/602			Sampled 14 wells.
1/93, 4/93	pН	Cd, Cr, Cu	X	-		8010/8020	-	-	Sampled 14 wells.
7/93	pН	Cd, Cr, Cu	Х			8010/8020 (TVPH, TEPH)			Sampled 15 wells. (MW-13S was added) TVPH and TEPH analysis on MW-09, 13S, and 16 only. Performed annual statistical analysis.
10/93	pН	Cd, Cr, Cu	х			8010/8020			Sampled 15 wells (MW-13S not analyzed for metals and pH) TVPH & TEPH analysis on MW-04, 07, 09, 13S, and 16 only. Performed statistical analysis.
1/94, 4/94	pН	Cd, Cr, Cu	х			8010/8020		-	Sampled 14 wells Performed statistical analysis.
7/94	pН	Cd, Cr, Cu	Х	See comment		8010/8020			Sampled 14 wells, chloride and sulfate analyses on MW-04, MW-09, MW-14S, MW-15S, MW-15D, and MW-16. Performed statistical analysis
10/94, 1/95, 4/95, 7/95, 10/95	pН	Cd, Cr, Cu	Х			8010/8020			Sampled 14 wells Performed statistical analysis.
1/96	pН	Cd, Cr, Cu	Х			8010/8020			Sampled 14 wells Performed statistical analysis. 1995 Annual Report included as Appendix F.
4/96,7/96	pН	Cd, Cr, Cu	Х			8010/8020		_	Sampled 14 wells Performed statistical analysis.
10/96	pН	Cd, Cr, Cu	Х			8010/ 8020	-		Sampled 14 wells Performed statistical analysis. 1996 Annual Report included as Appendix F.
1/97	pН	Cd, Cr, Cu	Х	-	**	8260, MTBE	uu uu		Sampled 14 wells Performed statistical analysis.
4/97,7/97	pН	Cd, Cr, Cu	X			8260	-		Sampled 14 wells Performed statistical analysis.
10/97	pН	Cd, Cr, Cu	х			8260	-	-	Sampled 14 wells Performed statistical analysis. 1997 Annual Report included as Appendix F.
1/98	рН	Cd, Cr, Cu	Х		***	8260			Sampled 14 wells Performed statistical analysis. Hexavalent Chromium by Method 7196 in all wells; and by Method 218.6 in wells MW-4A, MW-14S, MW-15S, and MW-15D.
4/98,7/98	pН	Cd, Cr, Cu	X			8260			Sampled 14 wells Performed statistical analysis.
10/98	pН	Cd, Cr, Cu	Х			8260			Sampled 14 wells Performed statistical analysis. 1998 Annual Report included as Appendix F.

Table 2-1 PHIBRO-TECH, INC.

Groundwater Monitoring Program Summary (continued)

Constant Indicator Trace University Volatile Appropria										
Sampling Event	Indicator Parameters	Trace Metals	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Appendix IX	1,4-Dioxane	Comments	
1/99, 4/99, 7/99, 10/99, 01/00, 04/00, 10/00, 04/01	pН	Cd,Cr,Cu	Χ*		-	8260	-	-	Sampled 14 wells Performed statistical analysis. Monitoring and reporting frequency changed from quarterly to semi-annually in April 2000. Monitoring and reporting frequency changed back from semi-annually to quarterly in April 2001.	
07/01, 10/01	рН	Cd,Cr,Cu	Χ*			8260	_	MW-015 MW-04 MW-09 MW-11 MW-06D MW-15D	Sampled 14 wells Performed statistical analysis. 2001 Annual Report included as Appendix G (10/01) 1,4-Dioxane sampled in selected wells (MW-01S, MW-04, MW-04A, MW-06D, MW-11, and MW-15D) during 07/01 and 10/01.	
1/02, 4/02, 7/02	pН	Cd,Cr, Cu	Х	-	-	8260B	-	-	Sampled 14 wells Performed statistical analysis.	
10/02	рН	Title 22 Metals	х	-	-	8260B	Х	-	Sampled 14 wells Performed statistical analysis. Annual Report included results for Appendix IX analyses performed on samples from wells MW-04, MW-07, MW-11, and MW-14S.	
1/03, 4/03, 7/03	pН	Cd, Cr, Cu	Х	-	-	8260B	-	-	Sampled 14 wells Performed statistical analysis.	
10/03	рН	Title 22 Metals	х	-	-	8260B	Х	-	Sampled 14 wells Performed statistical analysis. Annual Report includes results for Appendix IX analyses performed on samples from wells MW-04, MW-07, MW-11, and MW-14S.	
1/04, 4/04	pН	Cd, Cr, Cu	Х	-	-	8260B	-	-	Sampled 14 wells Performed statistical analysis.	

Appendix III Parameters -

As, Ba, Cd, Cr, F, Pb, Hg, N, Se, Ag, Endrin, Lindane, Methoxychlor, Toxaphene, 2,4-D, 2,4,5-TP (Silvex), Radium, Gross Alpha & Beta, Turbidity, coliform bacteria.

Water Quality Parameters -

Cl, Fe, Mn, Phenols, Na, SO4

Indicator Parameters (IP) -

TOX, TOC, pH, EC (quadruplicate)

624 -601/602 -

Purgeable halocarbons/aromatics analysis Purgeable halocarbons/aromatic analysis

8010/8020 -8260 -MTBE -

Purgeable halocarbons/aromatic analysis Methyl tertiary butyl ether

Volatile organics analysis

Appendix IX Parameters -

See Appendix F in the October 1990 Quarterly Sampling Report for a complete listing of parameters.

Analytical method changed from EPA 7196 to 7199 beginning with the October 2000 Sampling Event

Section 3 Laboratory Testing

Del Mar Analytical (DMA) provided analysis of the 21 aqueous samples collected during the April 2004 monitoring event. Fourteen monitoring well samples, two blind duplicate samples from MW-04 and MW-09, two equipment blank (EB) samples, and one decontamination water sample were collected and submitted to DMA for analysis of volatile organic compounds (VOCs by EPA Method 8260B), metals (EPA Method 6010), hexavalent chromium (EPA Method 7199), and pH (EPA Method 150.1). Two travel blanks (TB) were also submitted to Del Mar Analytical for analysis of VOCs only.

April 2004 groundwater analytical results are discussed in Section 6 and summarized in Tables 6-1 and 6-2. Quality assurance analytical results (duplicates, equipment blanks, and travel blanks) are discussed in Section 4 and summarized in Table 4-1. Individual analytical reports are contained in Appendix C.

Section 4 **Quality Assurance**

To verify the accuracy and validity of analytical data, certain quality assurance procedures were implemented. The field and laboratory quality assurance results were checked for deviations from the Quality Assurance (QA) guidelines discussed in the RFI Work Plan.

4.1 Field Quality Assurance

The field QA procedures included the use of duplicate samples, equipment blanks, travel blanks, and the use of chain-of-custody forms. The results of the QA analyses have been compiled in Table 4-1. Detection limits of parameters analyzed are shown in the analytical reports contained in Appendix A. Relative Percent Difference (RPD) between original and duplicate samples is also listed in Table 4-1.

4.1.1 Duplicate Samples

Standard accepted practice is to submit one duplicate sample for analysis for approximately every tenth sample collected. During this round of sampling, duplicate samples were collected from monitoring wells MW-04 and MW-09. The duplicate samples were submitted to the analytical laboratory as blind samples, and were designated MW-35 and MW-37, respectively, on the chain of custody forms. Monitoring wells MW-04 and MW-09 were selected due to elevated concentrations of certain contaminants detected during previous sampling rounds. Analytical results for the duplicate samples for April 2004 are shown in Table 4-1.

Relative percent differences (RPDs) between samples and duplicates collected from wells MW-09 and MW-04 were less than 25 percent for all parameters except total dissolved chromium and hexavalent chromium (Table 4-1). Dissolved chromium had an RPD of 25.6 percent and hexavalent chromium had an RPD of 34.3 percent at well MW-09.

4.1.2 Equipment Blanks

Two equipment blank samples were collected during this sampling event. An equipment blank collected on April 20, 2004 was obtained by allowing the deionized water to flow through a new, pre-cleaned, disposable bailer before sampling well MW-06D. The purpose of this equipment blank was to evaluate and ensure the effectiveness of factory cleaning of the disposable bailer. The equipment blank collected on April 21, 2004 was obtained by allowing deionized water to flow off the decontaminated submersible pump that was used to pump the groundwater samples for the entire sampling event, after well MW-04 and before well MW-15D. The purpose of this equipment blank was to assure that the pump was being sufficiently decontaminated between wells. The samples were collected in the appropriate containers and submitted for laboratory analysis of volatile organic compounds (EPA Method 8260), cadmium, chromium (total and hexavalent), copper, and pH. The

laboratory provided laboratory grade deionized water used for the collection of the equipment blanks. No compounds were detected in the equipment blank samples, as shown with sample type "EB" on Table 4-1.

4.1.3 Decontamination Water Blank

Water used for decontamination was collected for a decontamination water blank on April 21, 2004 by pouring decontamination water into the appropriate sample containers. The water used for the decontamination water blank was the same water used for decontaminating the pump and the sounder.

Analytical results for the deionized/distilled water blank, indicated with sample type "DI," are shown in Table 4-1. Chloroform was detected at 9.6 μ g/L and bromodichloromethane was detected at 1.4 μ g/L. However, it is unlikely that the decontamination water is influencing groundwater samples, as chloroform was not detected uniformly in site samples.

4.1.4 Travel Blanks

The detection of compounds in travel blanks is generally indicative of systematic contamination from sample transport, laboratory glassware cleaning, laboratory storage, or analytical procedures. During the April 2004 sampling event, two laboratory-prepared travel blanks (one for each day of sampling) consisting of organic-free water were labeled and submitted to the laboratory for volatile organic compound analysis by EPA Method 8260. The travel blanks were placed inside the cooler containing samples for volatile organic compounds, and accompanied the sample containers throughout the sampling event. No compounds were detected in the travel blank samples, as shown with sample type "TB" on Table 4-1.

4.1.5 Sample Control

All sample containers were labeled immediately prior to sampling with the sample identification information completed with a waterproof pen. Samples were transported under chain-of-custody and hand delivered by courier to the laboratory in ice-cooled chests. Copies of the chain-of-custody records are included in Appendix D.

4.2 Laboratory Quality Assurance

Internal laboratory QA/QC results were provided with each sample analytical report. Matrix spike, matrix spike duplicate, method blank, and duplicate control sample results are noted in the QA/QC reports. In addition, surrogate recoveries are also noted for volatile organics analyses. Samples for hexavalent chromium and pH were analyzed within the 24-holding time for all samples.

Table 4-1
Phibro-Tech, Inc.
Groundwater Analytical Results - April 2004
Field Quality Control Sample Analytical Summary

	Samula.			Metals	Metals (mg/L)			VOCs (ug/L)												
Well ID	Sample Date	Sample Type	Cadmium	Chromium		Copper	Benzene	PCE	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CBN	CFM	cis- 1,2-DCE	trans- 1,2-DCE	1,1,1- TCA	MCL	ISB	BDM
MW-04	04/21/04		0.29	20	24	0.03 RL-1,U	3.3	4 U	330	99	180	140	4 U	14	110	4 U	4 U	70	4.3	4 U
		к	0.34	23	28	0.04 RL-1,U	3.3	3.9	330	99	180	160	3.1	14	110	3	2.5 U	70	4.4	2.5 U
		RPD	15.9 %	14 %	15.4 %		0 %		0 %	0 %	0 %	13.3 %		0 %	0 %			0 %	3.3 %	
MW-09	04/21/04		0.005 U	3.4	2.9	0.01 U	1 U	5.4	190	62	200	30	2.1	73	7.7	2 U	2 U	71	2 U	2 U
		к	0.005 U	4.4	4.1	0.01 U	1 U	6.8	220	68	190	28	2.2	76	7.8	2 U	2 U	70	2 U	2 U
		RPD		25.6 %	34.3 %			23 %	14.6 %	9.2 %	5.1 %	6.9 %	4.7 %	4 %	1.3 %			1.4 %		
DI	04/21/04	N	0.005 U	0.005 U	0.001 U	0.01 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	9.6	1 U	1 U	1 U	5 U	1 U	1.4
ЕВ	04/20/04	N	0.005 U	0.005 U	0.001 U	0.01 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U
	04/21/04	N	0.005 U	0.005 U	0.001 U	0.01 U	0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U
тв	04/20/04	ТВ					0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U
	04/21/04	тв					0.5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U

Notes:

PCE = Tetrachloroethene; TCE = Trichloroethene; DCE = Dichloroethene; DCA = Dichloroethe

RL-1 = Reporting Limit elevated due to sample matrix effects.

U = Not detected at a concentration greater than the reporting limit shown.

Only detected compounds are listed.

Sample Type:

K = Duplicate (split) Sample

TB = Trip Blank

N = Equipment Decontamination Blank

RPD = Relative Percent Difference between original and duplicate samples (%)

Section 5 Groundwater Elevation

On April 20, 2004, prior to the initiation of well evacuation procedures, the depth to groundwater was measured in 22 of the 24 on-site monitoring wells. Groundwater elevations were calculated by subtracting the depth to static water level from the surveyed elevation of the corresponding monitoring well.

During the current sampling event, water level measurements were taken at shallow wells MW-01S, MW-03, MW-04, MW-05, MW-06B, MW-07, MW-08, MW-09, MW-10, MW-11, MW-12S, MW-13S, MW-14S, MW-15S, and MW-16. Water level measurements were also taken at deep wells MW-01D, MW-04A, MW-06D, MW-12D, MW-13D, MW-14D, and MW-15D. These wells were measured to evaluate the direction and gradient of groundwater flow underlying the facility and to help characterize the shallow and deep aquifer interaction. Well MW-02 was not measured due to its proximity to MW-12S. Well MW-06A was found to be dry.

Table 5-1 lists the depths to water and groundwater elevations for each well sampled for the last year. Historic groundwater elevations are presented in Appendix B. Figure 5-1 and Figure 5-2 show the approximate groundwater surface elevation of the upper and lower Hollydale aquifer, respectively, for wells screened in the shallow interval using data collected during the present sampling round. The contours shown in Figures 5-1 and 5-2 were generated by Land Desktop Development (LDD), a surface contouring software developed by Autodesk. LDD is commonly used in conjunction with CADD (Computer Aided Drafting and Design) to produce contour maps and other graphics.

The direction of groundwater flow in the shallow monitoring wells was approximately southwest at an average gradient of 0.0044 feet per foot (ft/ft). In particular, the shallow gradient was calculated between wells MW-01S and MW-07. The gradient in the shallow wells was slightly less than the January 2004 sampling event, which had a gradient of 0.0047 ft/ft (CDM, April 2004).

Figure 5-2 shows the approximate groundwater elevation of the lower Hollydale aquifer for wells screened in the deeper interval (78.3 to 123.5 feet below ground surface). Groundwater contours for the deeper wells follow the same general trend as those of the shallow wells, with a direction of groundwater flow towards the southwest at an average gradient of 0.0047 ft/ft. The gradient was calculated between wells MW-04A and MW-15D. This is slightly greater than the average gradient of 0.0046 ft/ft during the previous quarter.

Figures 5-3 and 5-4 show the fluctuation of groundwater elevations in the upper and lower Hollydale aquifer, respectively, since 2000. Both hydrographs indicate that groundwater elevations fluctuate seasonally, with annual peaks generally during April. In general, groundwater elevations have been declining since mid-2001.

At the 22 wells measured for water levels during this sampling round, there are seven locations where a deep well was measured adjacent to a shallow well. The screened intervals of the shallow wells vary (see Table 5-1), with 15 to 30 feet of screen placed within the interval from 45 to 77 feet below ground surface (bgs). Deep wells are screened with 15 to 20 feet of screen within the interval from 78.3 to 107 feet bgs, with the exception of MW-15D, which is screened from 108.5 to 123.5 feet bgs.

Of the well pairs, groundwater elevations at shallow wells MW-12S, MW-13S, MW-14S, and MW-15S were slightly higher (0.04 feet to 0.15 feet) than the corresponding deep well elevations. The groundwater elevation at deep wells MW-01S, MW-04, and MW-6B were slightly higher (0.01 to 0.04 feet) than the corresponding shallow well elevations. Based on these and past groundwater elevation comparisons among shallow and deep well pairs, it does not appear that a well-defined vertical gradient between shallow and deep intervals exists.

Average groundwater elevations during the present sampling event increased compared to the previous sampling event by an average of 0.77 feet. The maximum groundwater elevation increase occurred in well MW-03, which increased by 0.97 feet.

Table 5-1 Phibrotech, Inc. Groundwater Elevations

Well ID	Perforated Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth Measured	Calculated Casing Fill	Groundwater Elevation (feet
	(feet bgs)	(feet bgs)	(feet MSL)		(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
MW-01D	79.5-94.5	94.8	152.60	04/23/03	1.0 / 0.1	45.37	95.90		107.23
		94.8	152.60	07/29/03	0.0 / 0.0	48.50	96.00		104.10
		94.8	152.60	10/21/03	1.9 / 0.0	54.15	95.90		98.45
		94.8	152.60	01/21/04	0.0 / 0.0	55.61	95.92		96.99
		94.8	152.60	04/20/04	0.2 / 0.2	54.88	95.92	~~	97.72
MW-01S	47-62.5	62.5	152.63	04/23/03	0.1 / 0.1	45.29	62.22	0.3	107.34
		62.5	152.63	07/29/03	0.3 / 0.0	48.48	62.21	0.3	104.15
		62.5	152.63	10/21/03	1.0 / 0.0	54.03	62.24	0.3	98.60
		62.5	152.63	01/21/04	0.7 / 0.0	55.49	62.34	0.2	97.14
		62.5	152.63	04/20/04	NM / NM	54.93	62.19	0.3	97.70
MW-03	45-75	75	154.75	04/23/03	9.7 / 0.0	49.05	76.15		105.70
		75	154.75	07/29/03	6.3 / 0.0	52.31	76.10		102.44
		75	154.75	10/21/03	5.7 / 0.0	58.33	76.16		96.42
		75	154.75	01/21/04	22.0 / 0.0	59.87	76.33		94.88
		75	154.75	04/20/04	12.2 / 0.2	58.90	76.15		95.85
MW-04	45-75	67.5	152.37	04/23/03	1.1 / 0.0	46.77	70.33		105.60
		67.5	152.37	07/29/03	6.4 / 0.1	49.77	70.38		102.60
		67.5	152.37	10/21/03	1.0 / 0.0	55.72	70.30		96.65
		67.5	152.37	01/21/04	2.2 / 0.0	57.31	70.14		95.06
		67.5	152.37	04/20/04	1.4 / 1.0	56.54	70.31		95.83
MW-04A	87-107	107	152.46	04/23/03	1.1 / 0.0	46.76	108.65		105.70
		107	152.46	07/29/03	8.2 / 0.1	49.89	108.54		102.57
		107	152.46	10/21/03	1.9 / 0.1	55.81	108.56		96.65
		107	152.46	01/21/04	0.0 / 0.0	57.49	108.62		94.97
		107	152.46	04/20/04	1.0 / 1.0	56.59	108.6		95.87
MW-05	45-75	75	153.26	04/23/03	0.5 / 0.1	48.31	73.16	1.8	104.95
		75	153.26	07/29/03	0.0 / 0.0	51.37	73.20	1.8	101.89
		75	153.26	10/21/03	1.9 / 0.0	57.46	73.16	1.8	95.80
		75	153.26	01/21/04	0.0 / 0.0	59.23	73.30	1.7	94.03
		75	153.26	04/20/04	1.0 / 1.0	58.30	73.2	1.8	94.96
MW-06A	10-30	30		04/23/03	1.5 / 0.0	DRY	29.08	0.9	
		30		07/29/03	117.0 / 0.0	DRY	29.04	1.0	
		30		10/21/03	44.0 / 0.0	DRY	29.05	0.9	
		30		01/21/04	0.0 / 0.0	DRY	29.01	1.0	
		30		04/20/04	3.1 / 0.2	DRY	29.03	1.0	
MW-06B	45-75	77	149.53	04/23/03	0.0 / 0.0	43.98	76.05	1.0	105.55
		77	149.53	07/29/03	0.2 / 0.0	46.75	75.88	1.1	102.78
		77	149.53	10/21/03	1.0 / 0.0	52.29	75.93	1.1	97.24
		77	149.53	01/21/04	0.0 / 0.0	54.05	76.00	1.0	95.48
		77	149.53	04/20/04	0.2 / 0.2	53.45	75.86	1.1	96.08
MW-06D	79-94	95.5	150.13	04/23/03	0.5 / 0.5	44.52	92.74	2.8	105.61
		95.5	150.13	07/29/03	0.3 / 0.1	47.27	92.57	2.9	102.86
		95.5	150.13	10/21/03	1.9 / 0.1	52.82	90.60	4.9	97.31
		95.5	150.13	01/21/04	0.0 / 0.0	54.63	90.76	4.7	95.50

Figure 5-3
Phibrotech, Inc.
Shallow Well Groundwater Hydrograph

Figure 5-4
Phibrotech, Inc.
Deep Well Groundwater Hydrograph

Table 5-1 Phibrotech, Inc. Groundwater Elevations

Moli ID		Total Depth Constructed	MP	Dete	Well	Depth to Water	Total Depth	Calculated	Groundwater
Well ID	Intervals (feet bgs)	(feet bgs)	Elevation (feet MSL)	Date	Headspace* (ppm)	(feet below MP)	Measured (feet bgs)	Casing Fill (feet)	Elevation (feet MSL)
MW-07	45-75	75	149.42	04/23/03	1.7 / 0.1	44.15	71.10	3.9	105.27
		75	149.42	07/29/03	0.8 / 0.0	46.98	71.05	4.0	102.44
		75	149.42	10/21/03	2.9 / 0.0	52.81	70.98	4.0	96.61
		75	149.42	01/21/04	0.0 / 0.0	54.59	71.24	3.8	94.83
		75	149.42	04/20/04	0.2 / 0.2	53.82	71	4.0	95.60
MW-08	41-71	71	150.17	04/23/03	1.1 / 0.1	48.28	70.25	0.8	101.89
		71	150.17	07/29/03	5.1 / 0.1	47.38	70.17	0.8	102.79
		71	150.17	10/21/03	1.9 / 0.1	53.17	70.10	0.9	97.00
		71	150.17	01/21/04	2.2 / 0.0	54.75	70.20	0.8	95.42
		71	150.17	04/20/04	1.4 / 0.2	54.10	70.18	0.8	96.07
MW-09	44-77	77	152.96	04/23/03	4.0 / 0.5	46.83	75.64	1.4	106.13
1917 4-03	44-77	77	152.96	07/29/03	32.8 / 0.0	50.07	75.51	1.5	102.89
		77	152.96	10/21/03	21.1 / 0.0	55.90	75.62	1.4	97.06
		77	152.96	01/21/04	5.8 / 0.0	57.56	75.70	1.3	95.40
		77	152.96	04/20/04	2.2 / 0.2	56.72	75.70 75.63	1.4	96.24
B4\A7.40	45.75	75	452.00	0.4/00/00	40.405	47.77	76 47		100 10
MW-10	45-75	75 75	153.89	04/23/03	1.0 / 0.5	47.77	76.17		106.12
		75	153.89	07/29/03	0.8 / 0.0	51.04	76.20		102.85
		75	153.89	10/21/03	1.8 / 0.0	56.88	76.15		97.01
		75	153.89	01/21/04	0.7 / 0.0	58.40	76.32		95.49
		75	153.89	04/20/04	1.0 / 1.4	57.58	76.26		96.31
MW-11	55-75	75.5	155.76	04/23/03	1.7 / 0.0	49.35	76.93		106.41
		75.5	155.76	07/29/03	5.6 / 0.0	52.68	77.08		103.08
		75.5	155.76	10/21/03	1.9 / 0.0	58.53	76.90		97.23
		75.5	155.76	01/21/04	0.0 / 0.0	59.97	76.93		95.79
		75.5	155.76	04/20/04	2.6 / 0.2	59.11	76.9		96.65
MW-12D	84.5-100	101	155.72	04/23/03	1.1 / 0.1	49.07	102.85		106.65
		101	155.72	07/29/03	0.0 / 0.0	52.35	102.87		103.37
		101	155.72	10/21/03	0.0 / 0.0	58.20	102.75		97.52
		101	155.72	01/21/04	0.0 / 0.0	59.69	102.83		96.03
		101	155.72	04/20/04	0.2 / 0.2	58.88	102.88		96.84
MW-12S	51-72	72	155.79	04/23/03	1.1 / 0.1	49.00	74.60		106.79
		72	155.79	07/29/03	35.8 / 0.1	52.27	74.75		103.52
		72	155.79	10/21/03	1.8 / 0.1	58.10	74.65		97.69
		72	155.79	01/21/04	1.9 / 0.0	59.53	74.93		96.26
		72	155.79	04/20/04	0.2 / 0.2	58.80	74.83		96.99
MW-13D	78.3-93.3	93.3	151.68	04/23/03	9.2 / 0.1	45.28	93.61		106.40
		93.3	151.68	07/29/03	4.2 / 0.0	48.43	93.60		103.25
		93.3	151.68	10/21/03	1.0 / 0.0	54.20	93.60		97.48
		93.3	151.68	01/21/04	0.0 / 0.0	55.72	93.70		95.96
		93.3	151.68	04/20/04	1.6 / 0.2	55.05	93.6		96.63
MW-13S	50.3-70.3	70.3	151.72	04/23/03	3.8 / 0.1	45.30	69.38	0.9	106.42
		70.3	151.72	07/29/03	4.6 / 0.1	48.44	69.24	1.1	103.28
		70.3	151.72	10/21/03	1.9 / 0.1	54.26	69.25	1,1	97.46
		70.3	151 72	01/21/04	2.9 / 0.0	55.70	69.47	0.8	96.02
		70.3 70.3	151.72 151.72	01/21/04 04/20/04	2.9 / 0.0 2.2 / 0.2	55.70 55.02	69.47 69.44	0.8 0.9	96.02 96.70

Table 5-1 Phibrotech, Inc. Groundwater Elevations

Well ID I	Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water (feet below MP)	Total Depth Measured	Calculated Casing Fill	•
	feet bgs)	(feet bgs)	(feet MSL)		(ppm)	(root below iiii)	(feet bgs)	(feet)	MSL)
MW-14D	88-103	103.3	150.60	04/23/03	1.7 / 0.0	45.28	103.91		105.32
		103.3	150.60	07/29/03	0.0 / 0.0	48.36	104.56		102.24
		103.3	150.60	10/21/03	1.7 / 0.0	54.36	103.86		96.24
		103.3	150.60	01/21/04	0.7 / 0.0	56.03	104.02		94.57
		103.3	150.60	04/20/04	1.0 / 1.0	55.18	104		95.42
MW-14S	46-72	71.5	150.54	04/23/03	45.8 / 0.0	45.19	70.76	0.7	105.35
		71.5	150.54	07/29/03	18.4 / 0.0	48.30	70.82	0.7	102.24
		71.5	150.54	10/21/03	5.7 / 0.0	54.18	70.75	0.8	96.36
		71.5	150.54	01/21/04	2.2 / 0.0	55.89	70.87	0.6	94.65
		71.5	150.54	04/20/04	15.0 / 1.0	55.08	70.77	0.7	95.46
MW-15D10	8.5-123.5	123.8	150.96	04/23/03	0.0 / 0.0	46.10	124.05		104.86
		123.8	150.96	07/29/03	0.2 / 0.0	49.24	124.92		101.72
		123.8	150.96	10/21/03	1.1 / 0.0	55.27	124.10		95.69
		123.8	150.96	01/21/04	0.7 / 0.0	56.87	124.05		94.09
		123.8	150.96	04/20/04	0.4 / 0.4	55.98	124.06		94.98
MW-15S 5	51.5-71.5	71.5	151.01	04/23/03	4.0 / 0.1	46.02	71.46	0.0	104.99
		71.5	151.01	07/29/03	0.6 / 0.0	49.02	71.40	0.1	101.99
		71.5	151.01	10/21/03	0.0 / 0.0	55.02	71.43	0.1	95.99
		71.5	151.01	01/21/04	0.0 / 0.0	56.77	71.49	0.0	94.24
		71.5	151.01	04/20/04	0.4 / 0.4	55.88	71.47	0.0	95.13
MW-16	42-62	62.5	150.27	04/23/03	2.8 / 0.1	44.62	62.13	0.4	105.65
		62.5	150.27	07/29/03	3.7 / 0.0	44.49	62.12	0.4	105.78
		62.5	150.27	10/21/03	/ 0.0	53.32	62.11	0.4	96.95
		62.5	150.27	01/21/04	1.4 / 0.0	54.94	62.11	0.4	95.33
		62.5	150.27	04/20/04	36.0 / 0.2	54.30	62.1	0.4	95.97

MP = Measuring point (top of steel casing)

Note: Depth to water measurements collected on April 20, 2004 prior to purging/sampling on-site wells.

^{--- =} Not measured or not calculated.

bgs = below ground surface

ppm = parts per million

NM = Not measured

MSL = mean sea level

^{*} Measured with PID prior to sampling (casing/background).

Section 6 Groundwater Quality

Historical and recent sampling results are summarized in Appendix B. Analytical results for the prior 12 month period, in addition to the most recent quarterly sampling event, are summarized in Tables 6-1 and 6-2. Laboratory analytical reports for all wells sampled during the April 2004 sampling round are provided in Appendix C.

Consistent with the results of laboratory testing performed on the groundwater samples collected since January 1989 from the on-site monitoring wells, three contaminant plumes in the Hollydale Aquifer were identified. Historically, these plumes have been present at varying concentrations and lateral extent. One small plume, consisting primarily of chromium and smaller concentrations of cadmium, has been aligned in a northeasterly to southwesterly direction in the vicinity of wells MW-04 and MW-14S. The second, consisting of purgeable aromatics (BTEX), appears to originate at the northwestern portion of the site, with highest concentrations at MW-03, MW-11, and MW-04. The third plume consists of TCE and related parameters with highest concentrations generally detected in wells MW-14S, MW-11, MW-09, MW-04 and MW-03.

6.1 Chlorinated VOCs

Table 6-1 shows the analytical results for VOCs in deep and shallow wells sampled during April 2004. TCE was the primary compound detected, with miscellaneous other halogenated VOCs also detected. The table also shows, for comparison purposes, maximum contaminant limits (MCLs) where established.

Trichloroethene (TCE)

TCE was detected in all 14 of the groundwater monitoring wells sampled. Concentrations of TCE detected in the shallow and deep zone wells are shown on Figures 6-1 and 6-2, respectively. The highest concentration of TCE detected was 570 micrograms per liter ($\mu g/L$) in well MW-14S. This concentration represents an increase from 480 $\mu g/L$ observed during the previous quarter. The second highest concentration of TCE detected was 330 $\mu g/L$ in well MW-04, an increase from the result of 190 $\mu g/L$ detected during the previous quarter. Of the fourteen wells sampled, thirteen wells contained concentrations of TCE that exceeded the MCL of 5 $\mu g/L$.

Compared to the previous quarter, the TCE concentration increased in five of the ten shallow wells sampled: MW-04, MW-09, MW-11, MW-14S, and MW-16. TCE concentrations decreased at five of ten wells: MW-01S, MW-03, MW-06B, MW-07, and MW-15S. TCE concentrations ranged from 13 (MW-01S) to 570 μ g/L (MW-14S).

Compared to the previous quarter, TCE concentrations increased at deep well MW-15D; TCE concentrations decreased at wells MW-01D, MW-04A and

MW-06D. Deep-well TCE concentrations ranged from 3.6 (MW-15D) to 20 μ g/L (MW-04A). In general, TCE concentrations were lower in the deeper zone than the shallow zone.

A review of the historical analytical results contained in Appendix B reveals that, with minor exceptions, TCE has historically been detected in all on-site monitoring wells, including the up gradient wells. Past discussions with Department of Health Services (now Cal EPA DTSC) and Regional Water Quality Control Board (RWQCB) staff indicate that TCE and other halogenated organic are generally recognized as regional groundwater contaminants.

Other Chlorinated VOCs

During the April 2004 sampling event, other chlorinated VOCs were detected in samples of on-site wells (Table 6-1). Chlorinated VOCs detected other than TCE included 1,2,4-trichlorobenzene, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), 1,2-DCA, cis- and trans-1,2-DCE, chlorobenzene, carbon tetrachloride, chloroform, methylene chloride, and tetrachloroethene (PCE).

1,1-DCA was detected in eleven of the 14 wells sampled, with detected concentrations ranging from 1.3 (MW-01S) to 200 μ g/L (MW-09). The MCL for 1,1-DCA is 5 μ g/L.

1,2-DCA was present above reporting limits in nine of the sampled wells, with concentrations ranging from 0.67 μ g/l in MW-01S to 140 μ g/L in MW-04. The MCL for 1,2-DCA is 0.5 μ g/L.

1,1-DCE was present above reporting limits in eleven sampled wells, with concentrations ranging from 1 (MW-01S) to 99 μ g/L (MW-04). The MCL for 1,1-DCE is 6 μ g/L.

Detectable concentrations of cis-1,2-DCE were reported in nine of the wells sampled. Among wells with detections, concentrations ranged from 1.3 μ g/L in MW-04A to 110 μ g/L in MW-04. The MCL for cis-1,2-DCE is 6 μ g/L.

PCE was detected in twelve of the fourteen sampled wells, at concentrations ranging from 1.8 (MW-04A) to 21 μ g/L (MW-06B). The MCL for PCE is 5 μ g/L.

1,2,4-Trichlorobenzene, chlorobenzene, carbon tetrachloride, chloroform, methylene chloride, and trans-1,2-DCE were detected at one or two wells. Detections of these other halogenated organic compounds are assumed to be related to the TCE plume. The presence of trans-1,2-dichloroethene and vinyl chloride could be a result of anaerobic degradation of TCE.

6.2 Non-Chlorinated VOCs

According to PTI personnel, with the exception of methylene chloride, non-chlorinated organic chemicals have not historically been used on-site in any of the production processes. Two 10,000-gallon underground storage tanks (containing

diesel and gasoline), however, were located in the approximate center of the facility, due east of the drum wash area. During tank removal activities in July 1989, petroleum hydrocarbon contamination was discovered in the tank excavation. The CDM RFI report indicated that petroleum hydrocarbon contamination was not detected at depths below 30 feet near the former tank locations (CDM, December 1991). Although they have not been used on-site, aromatic compounds have been historically detected in groundwater underlying the facility. The primary aromatic organic compounds of concern are toluene, ethylbenzene and total xylenes, which vary in both concentration and lateral extent. The RFI report indicated that these compounds appeared to be migrating onto the subject property from the property to the north. According to Los Angeles County Department of Public Works files, leaks from tanks containing purgeable aromatic compounds with subsequent groundwater contamination are known to have occurred at the property to the north of PTI (McLaren Hart, October 1991).

Aromatic volatile organic compound results for April 2004 and the past year are presented in Table 6-1. Concentrations of total aromatics (BTEX) for the shallow wells are illustrated on Figure 6-3. Historic sampling results indicate that purgeable aromatic contamination originated off-site from the north and has migrated onto the subject property.

Since approximately July 1991, elevated concentrations of these compounds have been detected in wells MW-04 and MW-14S, indicating that the plume may be migrating downgradient. Total BTEX concentrations in MW-04 began to gradually decrease in October 1998 until January 2000, at which time MW-04 had a total BTEX concentration of 11.1 μ g/L. Concentrations began to increase in MW-04 between October 2000 until October 2001, when the total BTEX concentrations reached 6,500 μ g/L. Concentrations have fluctuated significantly at MW-11 since January 2002.

The highest total BTEX concentrations during the April 2004 sampling event were observed at MW-04. The total BTEX concentration was 19.3 μ g/L. The April 2004 total BTEX concentration in well MW-11 was 10.6 μ g/L. For the purposes of this calculation, non-detected parameters are counted as equal to their reporting limits.

Benzene

Benzene was detected in four of the fourteen wells (MW-01D, MW-03, MW-04, MW-14S) sampled during April 2004. Benzene detections ranged from 0.58 (MW-01D) to 3.3 μ g/L (MW-04). The benzene MCL is 1 μ g/L. Historical evidence indicates that benzene is not a contaminant of concern for the facility.

Toluene

During the April 2004 sampling event, toluene was not detected above the reporting limit in any of the 14 wells sampled. Toluene has not been detected since December 2002.

Ethylbenzene

During the April 2004 sampling round, ethylbenzene was detected at one well, MW-011, at 3.6 μ g/L.

Total Xylenes

During the April 2004 sampling event, total xylenes were not detected in any sampled wells. Total xylenes were detected in only one well (MW-04) at low concentrations $(9.6 \,\mu g/L)$ during the January 2004 event.

Other Non-Chlorinated VOCs

During the April 2004 sampling event, other non-chlorinated VOCs detected included isopropylbenzene at low concentrations (4.3 μ g/L) at MW-04. Other non-chlorinated VOCs were not detected during this event.

6.3 Metals and pH

Table 6-2 shows the analytical results for cadmium, total and hexavalent chromium, copper, and pH for wells sampled during the April 2004 and the past year.

Hexavalent Chromium (Cr+6)

During this sampling event, hexavalent chromium was analyzed using EPA Method 7199 with a typical reporting limit of 0.001 mg/L. Prior to the April 2001 sampling event, hexavalent chromium was analyzed using EPA Method 7196 with a typical reporting limit of 0.02 mg/L.

Hexavalent chromium was detected in seven of the fourteen wells sampled. Detections ranged from 0.0031 (MW-06B) to 24 mg/L (MW-04). Figure 6-4 shows the concentrations of hexavalent chromium detected in the shallow wells during April 2004.

Water purged from MW-04 and MW-09 has typically been yellow in color since CDM began sampling the wells on a quarterly basis in January 1989. During this sampling round, the color of water from these two wells was again noted as yellow.

Figure 6-5 shows the concentrations of hexavalent chromium and groundwater elevations in MW-04 over time. The concentrations of hexavalent chromium at MW-04 generally decreased from July 1989 (120 mg/L) to July 1993 (1.8 mg/L), while groundwater elevations increased. From July 1993 through early 2001, hexavalent chromium concentrations have fluctuated while groundwater elevations have remained fairly constant. From mid 2001 through the most recent sampling event, water levels have exhibited a generally steady decline, while hexavalent chromium concentrations have remained fairly constant.

Hexavalent chromium concentrations decreased in MW-09 between October 1989 and January 1991. Between January 1992 and July 1998 hexavalent chromium concentrations were not detected, except for a trace amount detected in October 1991.

Since October 1998, 15 of the 21 sampling events indicated detectable concentrations of hexavalent chromium in well MW-09. During the April 2004 sampling event, hexavalent chromium was detected in well MW-09 at a concentration of 2.9 mg/L.

Total Chromium (Cr)

Total chromium was detected above its reporting limit in four monitoring wells during the April 2004 sampling event. Chromium concentrations ranged from 0.0067 (MW-15D) to 20 mg/L (MW-04). Figure 6-6 shows the concentrations of total chromium detected in shallow monitoring wells during April 2004.

Figure 6-7 shows the concentrations of total chromium and corresponding groundwater elevations in MW-04 over time. Comparison of historical total chromium data with present data (Appendix B) indicates that total chromium concentrations over time have exhibited the same general trends in well MW-04 as hexavalent chromium. Historically, the highest total chromium concentrations have been detected in MW-04. Sporadic detections of total chromium close to the detection limit have occurred historically in nearly all shallow wells on site.

Cadmium (Cd)

During the April 2004 sampling event, cadmium was detected at two monitoring wells: MW-15S (0.0077 mg/L) and MW-04 (0.29 mg/L). Figure 6-8 shows the cadmium concentrations detected in the on-site wells during April 2004. Cadmium has been detected consistently only in well MW-04. Figure 6-9 shows the concentrations of cadmium and corresponding groundwater elevations in MW-04 over time. As shown on Figure 6-9, cadmium concentrations have fluctuated considerably (i.e., from non-detectable at a detection limit of 0.005 mg/L during October 1993 to 0.86 mg/L during July 1992) since July 1990.

Copper (Cu)

Copper was detected at a concentration greater than the reporting limit in three of the sampled wells: 0.023 mg/L in well MW-14S, 0.041 at MW-01D, and 0.045 mg/L in well MW-04A. None of these concentrations exceed the secondary MCL of 1.3 mg/L. Figure 6-10 shows the copper concentrations detected in the on-site wells during April 2004. Historically, with the exception of well MW-14S, concentrations of copper above the secondary MCL have not been detected in on-site monitoring wells.

pН

Groundwater samples from all wells were measured for pH in the field during purging activities, and also by the analytical laboratory on the samples submitted for analysis. Field pH measurements were recorded on the field purge sheets during well purging. In April 2004, the field measurements of pH generally correlated with the values shown in Table 6-2, which range from 6.87 (MW-09) to 7.60 (MW-15D).

Figure 6-3

PHIBRO-TECH, INC., SANTA FE SPRINGS, CA

Hexavalent Chromium Concentration vs.
Groundwater Elevation MW-04
January 1989 - April 2004

PHIBRO-TECH, INC., SANTA FE SPRINGS, CA

Total Chromium Concentration vs. Groundwater Elevation MW-04 January 1989 - April 2004

Figure 6-9

Well Number	Sample Date	Sample Benzene Type (1)	Toluene (150)	Ethyl- benzene (300)	Xylenes, Total (1,750)	PCE (5)	1,1,1- TCA (200)	TCE (5)	1,1-DCE (6)	1,1-DCA (5)	1,2-DCA (0.5)	CCI4 (0.5)	CFM (100)	cis- 1,2-DCE (6)	trans- 1,2-DCE (10)	MCL (5)	VC (0.5)
MW-01D	04/23/03	0.5 U	1 U	1 U	2 U	1.8	1 U	1.9	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	07/30/03	0.98	1 U	1 U	2 U	1.6	1 U	1.6	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	10/21/03	1.2	1 U	1 U	2 U	1.4	1 U	2.4	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	01/21/04	4	1 U	1 U	2 U	5.7	1 U	10	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	04/20/04	0.58	1 U	1 U	2 U	3	1 U	6.9	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
MW-01S	04/23/03	0.5 U	1 U	1 U	2 U	1 U	1 U	11	1 U	1.8	0.5 U	0.5 U	1 U	8	1 U	5 U	0.5 U
	07/29/03	0.5 U	1 U	1 U	2 U	1 U	1 U	13	1 U	1.8	0.67	0.5 U	1 U	6.5	1 U	5 U	0.5 U
	10/21/03	0.5 U	1 U	1 U	2 U	1.5	1 U	12	1 U	1 U	1.1	0.5 U	1 U	2.6	1 U	5 U	0.5 U
	01/21/04	0.5 U	1 U	1 U	2 U	5.2	1 U	18	1 U	1.4	0.68	0.5 U	1 U	1.4	1 U	5 U	0.5 U
	04/20/04	0.5 U	1 U	1 U	2 U	7.3	1 U	13	1	1.3	0.67	0.5 U	1 U	1 U	1 U	5 U	0.5 U
MW-03	04/23/03	1 U	2 U	2 U	4 U	8.3	2 U	190	34	34	3.8	46	47	2 U	2 U	10 U	1 U
	07/29/03	2.5 U	5 U	5 U	10 U	11	5 U	280	34	37	6	70	72	5 U	5 U	25 U	2.5 U
	10/21/03	2.5	1 U	1600	209 M2	4	1 U	110 M-HA	18	19	9	17	18	12	1 U	5 U	0.5 U
	01/21/04	1.8	1 U	60	2 U	4.1	1 U	200	33	34	76	25	24	18	1 U	5 U	0.5 U
	04/20/04	1.2	1 U	1 U	2 U	5.1	1 U	180	31	29	40	49	32	9.6	1 U	5 U	0.5 U
MW-04	04/25/03	5.6	5 U	540	31	5 U	5 U	130	83	150	150	2.5 U	17	210	5 U	68	2.5 U
		K 5.6	5 U	500	28.4	5 U	5 U	140	83	150	160	2.5 U	18	220	5 U	75	2.5 U
	07/30/03	5.8	5 U	5 U	10 U	5 U	5 U	140	78	160	56	2.5 U	25	230	5 U	96	2.5 U
		K 7	10 U	10 U	20 U	10 U	10 U	150	80	170	59	5 U	25	250	10 U	100	5 U
	10/23/03	20 U	20 U	410	40 U	20 U	20 U	140	65	150	53	50 U	20 U	160	20 U	61	50 U
		K 8 U	8 U	390	4 U	8 U	8 U	150	73	160	55	20 U	13	180	8 U	58	20 U
	01/23/04	5.7	4 U	200	9.6	4 U	4 U	190	74	200	120	2 U	16	170	4 U	73	2 U
		K 6.3	2.5 U	210	13	3	2.5 U	200	76	190	140	1.2 U	16	150	3.4	67	1.2 U
	04/21/04	3.3	4 U	4 U	8 U	4 U	4 U	330	99	180	140	2 U	14	110	4 U	70	2 U
		K 3.3	2.5 U	2.5 U	5 U	3.9	2.5 U	330	99	180	160	1.2 U	14	110	3	70	1.2 U
MW-04A	04/24/03	1.7	1 U	1 U	2 U	5.3	2.9	110	37	150	0.5 U	0.5 U	7	13	2.2	5 U	0.5 U
	07/30/03	2.2	4 U	4 U	8 U	6.8	4	150	47	230	2 U	2 U	9.2	16	4 U	20 U	2 U

Well Number	Sample Date	Sample Benzene Type (1)	Toluene (150)	Ethyl- benzene (300)	Xylenes, Total (1,750)	PCE (5)	1,1,1- TCA (200)	TCE (5)	1,1-DCE (6)	1,1-DCA (5)	1,2-DCA (0.5)	CCI4 (0.5)	CFM (100)	cis- 1,2-DCE (6)	trans- 1,2-DCE (10)	MCL (5)	VC (0.5)
MW-04A	10/21/03	17	4 U	4 U	8 U	5.3	4 U	130	26	210	2 U	2 U	8.9	13	4 U	20 U	2 U
	01/22/04	3.3	2 U	2 U	4 U	2.9	2 U	63	17	99	1 U	1 U	4	7.7	2 U	10 U	1 U
	04/21/04	0.5 U	1 U	1 U	2 U	1.8	1 U	20	2	16	0.5 U	0.5 U	1 U	1.3	1 U	5 U	0.5 U
MW-06B	04/24/03	0.5 U	1 U	1 U	2 U	1.6	1 U	15	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	07/30/03	0.5 U	1 U	1 U	2 U	1.2	1 U	13	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	10/22/03	0.5 U	1 U	1 U	2 U	4.4	1 U	18	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	01/22/04	0.5 U	1 U	1 U	2 U	3.5	1 U	18	7.6	5.9	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	04/20/04	0.5 U	1 U	1 U	2 U	21	1 U	15	2.1	1.8	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
MW-06D	04/24/03	0.5 U	1 U	1 U	2 U	1.9	1 U	8.8	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	07/30/03	0.5 U	1 U	1 U	2 U	1 U	1 U	4.1	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	10/22/03	0.5 U	1 U	1.6	2 U	1.6	1 U	7	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	01/22/04	0.5 U	1 U	1 U	2 U	12	1 U	22	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	04/20/04	0.5 U	1 U	1 U	2 U	6.1	1 U	16	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
MW-07	04/24/03	0.5 U	1 U	1 U	2 U	1.7	1 U	59	7.4	48	18	0.5 U	1.8	13	1.1	5 U	0.5 U
	07/30/03	0.5 U	1 U	1 U	2 U	1.7	1 U	60	8.5	52	20	0.5 U	1.6	16	1.7	5 U	0.5 U
	10/23/03	2 U	2 U	2 U	4 U	2 U	2 U	11	5 U	5.8	3.3	5 U	2 U	2 U	2 U	5 U	5 U
	01/22/04	0.5 U	1 U	1 U	2 U	1.7	1 U	32	2.3	24	5.3	0.5 U	1 U	6.2	1 U	5 U	0.5 U
	04/21/04	0.5 U	1 U	1 U	2 U	2.2	1 U	28	1.4	14	3.4	0.5 U	1 U	4.4	1 U	5 U	0.5 U
MW-09	04/25/03	2.5 U	5 U	5 U	10 U	6	5.6	240	55	180	180	2.5 U	80	12	5 U	25 U	2.5 U
		K 2.5 U	5 U	5 U	10 U	5.5	5.8	250	58	200	170	2.5 U	86	13	5 U	25 U	2.5 U
	07/31/03	5 U	10 U	10 U	20 U	10 U	10 U	480	120	370	330	5 U	160	20	10 U	84	5 U
		K 2.5 U	5 U	5 U	10 U	9	7.2	460	120	390	310	2.5 U	170	22	5 U	81	2.5 U
	10/22/03	5 U	10 U	10 U	20 U	10 U	10 U	150	38	130	140	5 U	74	10 U	10 U	190	5 U
		K 1 U	2 U	2 U	4 U	4.1	2 U	130	32	120	140	1 U	66	4.3	2 U	140	1 U
	01/23/04	0.5 U	1 U	1 U	2 U	5.6	1.4	95	27	94	26	0.5 U	38	4.9	1 U	14	0.5 U
		K 0.5 U	1 U	1 U	2 U	5.9	1.7	100	28	99	26	0.5 U	41	5.5	1 U	12	0.5 U
	04/21/04	1 U	2 U	2 U	4 U	5.4	2 U	190	62	200	30	1 U	73	7.7	2 U	71	1 U
		K 1 U	2 U	2 U	4 U	6.8	2 U	220	68	190	28	1 U	76	7.8	2 U	70	1 U

Weil Number	Sample Date	Sample Benzene Type (1)	Toluene (150)	Ethyl- benzene (300)	Xylenes, Total (1,750)	PCE (5)	1,1,1- TCA (200)	TCE (5)	1,1-DCE (6)	1,1-DCA (5)	1,2-DCA (0.5)	CCI4 (0.5)	CFM (100)	cis- 1,2-DCE (6)	trans- 1,2-DCE (10)	MCL (5)	VC (0.5)
MW-11	04/25/03	2.5 U	5 U	5 U	10 U	5 U	5 U	410	40	120	16	2.5 U	13	29	5 U	25 U	2.5 U
	07/31/03	5 U	10 U	210	94	10 U	10 U	1100	96	370	5.4	5 U	50	44	10 U	50 U	5 U
	10/23/03	20 U	20 U	710	40 U	20 U	20 U	380	50 U	56	300	50 U	20 U	46	20 U	50 U	50 U
	01/23/04	1 U	2 U	24	4 U	2.6	2 U	190	15	37	22	1 U	4.7	24	2 U	10 U	1 U
	04/21/04	1 U	2 U	3.6	4 U	3.3	2 U	250	16	40	24	1 U	6.2	8.2	2 U	10 U	1 U
MW-14S	04/24/03	2.6	4 U	240	15.4	4 U	4 U	160	37	47	36	6.6	12	10	4 U	20 U	2 U
	07/30/03	1.4	1 U	49	2 U	3.3	1 U	200	59	79	19	11	26	8.5	1 U	5 U	0.5 U
	10/23/03	20 U	20 U	80	40 U	20 U	20 U	490	90	110	46	50 U	37	20 U	20 U	50 U	50 U
	01/22/04	2 U	4 U	4 U	8 U	5.4	4 U	480	76	100	36	16	34	13	4 U	20 U	2 U
	04/21/04	2.2	4 U	4 U	8 U	4.9	4 U	570	77	87	26	17	33	13	4 U	20 U	2 U
MW-15D	04/23/03	2.3	1 U	1 U	2 U	2	1 U	7.6	1 U	1 U	1.3	0.5 Ų	1 U	1 U	1 U	5 U	0.5 U
	07/30/03	1.4	1 U	1 U	2 U	4.1	1 U	8.1	1 U	1 U	0.77	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	10/21/03	1.9	1 U	1 U	2 U	2.3	1 U	5.3	1 U	1 U	0.6	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	01/22/04	0.5 U	1 U	1 U	2 U	2.3	1 U	3	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
	04/21/04	0.5 U	1 U	1 U	2 U	1 U	1 U	3.6	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U
MW-15S	04/24/03	0.5	1 U	1 U	2 U	1 U	1 U	3.2	1 U	1 U	12	0.5 U	2	1 U	1 U	5 U	0.5 U
	07/30/03	0.5 U	1 U	1 U	2 U	1.2	1 U	5.1	1 U	1 U	13	4.5	21	1 U	1 U	5 U	0.5 U
	10/22/03	0.5 U	1 U	1 U	2 U	2.2	1 U	21	2.4	2.7	22	2	11	1 U	1 U	5 U	0.5 U
	01/22/04	0.61	1 U	1 U	2 U	2.5	1 U	85	15	26	79	0.5 U	5.4	10	1 U	5 U	0.5 U
	04/21/04	0.5 U	1 U	1 U	2 U	2.2	1 U	73	8.6	18	40	0.63	4.3	7.6	1 U	5 U	0.5 U
MW-16	04/24/03	0.5 U	1 U	8.3	2 U	2.2	1 U	20	7	63	14	0.5 U	1 U	6.1	1.3	5 U	0.5 U
	07/31/03	0.51	1 U	1.5	2 U	2.3	1 U	38	19	180	25	0.5 U	1	29	6.1	5 U	0.69
	10/22/03	0.5 U	1 U	1 U	2 U	1.5	1 U	22	11	100	10	0.5 U	1 U	25	4.2	5 U	0.67
	01/23/04	0.5 U	1 U	1 U	2 U	1.8	1 U	17	7.1	63	8.1	0.5 U	1 U	15	3.2	5 U	0.58
	04/21/04	0.5 U	1 U	1 U	2 U	2	1 U	19	4.9	39	5.6	0.5 U	1 U	10	2.2	5 U	0.5 U

Well Sam	nple	Sample E	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	PCE	1,1,1- TCA	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	vc
Number Da	ate	Type	(1)	(150)	(300)	(1,750)	(5)	(200)	(5)	(6)	(5)	(0.5)	(0.5)	(100)	(6)	(10)	(5)	(0.5)

Notes:

PCE = Tetrachloroethene; TCE = Trichloroethene; TCA = Trichloroethene; DCE = Dichloroethene; DCA = Dichloroeth

Samples analyzed by EPA Method 8260B.

All concentrations are reported in micrograms per liter (ug/L).

Only selected compounds are listed.

M-HA = Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information.

M2 = The MS and/or MSD were below acceptance limits due to sample matrix interference.

U = Not detected at a concentration greater than the reporting limit shown.

Sample Type:

K = Split sample

Table 6-2 Phibro-Tech, Inc. Groundwater Analytical Results - April 2004 Metals and pH Analytical Summary

Well	Sample	Sample		Cadmium	Chromium		Copper
lumber	Date	Туре	pH	(0.005)	(0.05)	Cr (+6)	(1.3)
MW-01D	04/23/03		7.14	0.005 U	0.005 U	0.001 U	0.01 U
10104-0115					0.024	0.001 U	0.013
	07/30/03		7.55	0.005 U			
	10/21/03		7.44	0.005 U	0.005 U	0.001 U	0.021
	01/21/04		7.39	0.005 U	0.005 U	0.001 U	0.01 U
	04/20/04		7.23	0.005 U	0.005 U	0.001 U	0.041
MW-01S	04/23/03		6.86	0.01 RL-3,U	0.01 RL-3,U	0.001 U	0.02 RL-3,U
	07/29/03		6.76	0.01 RL-3,U	0.01 RL-3,U	0.001 U	0.03 RL-3
	10/21/03		6.94	0.005 U	0.005 U	0.001 U	0.01 U
	01/21/04		6.91	0.005 U	0.005 U	0.001 U	0.01 U
	04/20/04		7.11	0.005 U	0.005 U	0.001 U	0.01 U
MW-03	04/23/03		7.08	0.005 U	0.005 U	0.001 U	0.01 U
	07/29/03		7.09	0.005 U	0.005 U	0.001 U	0.01 U
	10/21/03		7.09	0.005 U	0.005 U	0.001 U	0.01 U
			7.3 7.12	0.005 U	0.005 U	0.001 U	0.01 U
	01/21/04				0.005 U	0.001 U	0.01 U
	04/20/04		7.24	0.005 U	0.005 0	0.001 0	0.01 0
MW-04	04/25/03		6.92	0.29	16	14	0.02 RL-3,U
		K	6.99	0.29	16	20	0.02 RL-3,U
	07/30/03		6.88	0.41	30	29	0.03 RL-1,U
		κ	6.83	0.47	37	33	0.05 RL-1,U
	10/23/03		6.85	0.24	21	20	0.02 RL-1,U
		K	6.74	0.21	18	21	0.02 RL-3,U
	01/23/04		6.71	0.32	22	28	0.02 RL-1,U
		K	6.78	0.27	16	29	0.02 RL-1,U
	04/21/04		6.88	0.29	20	24	0.03 RL-1,U
		К	6.83	0.34	23	28	0.04 RL-1,U
/W-04A	04/24/03		7.17	0.005 U	0.0077	0.0055	0.035
,,,,	07/30/03		6.92	0.005 U	0.005 U	0.0029	0.024
				0.005 U	0.005 U	0.001 U	0.025
	10/21/03		7.02		0.005 U	0.0027	0.03
	01/22/04		7.3	0.005 U	0.005 U	0.0027	0.045
	04/21/04		7.59	0.005 U	0.005 0	0.0096	0.043
MW-06B	04/24/03		7.43	0.005 U	0.0078	0.0073	0.01 U
	07/30/03		7.73	0.005 U	0.005 U	0.0043 O-09	0.01
	10/22/03		7.63	0.005 U	0.005 U	0.001 U	0.01 U
	01/22/04		7.17	0.005 U	0.005 U	0.001 U	0.01 U
	04/20/04		7.4	0.005 U	0.005 U	0.0031	0.01 U
MW-06D	04/24/03		7.23	0.005 U	0.005 U	0.0021	0.01 U
	07/30/03		7.28	0.005 U	0.005 U	0.0023 O-09	0.014
	10/22/03		7.20	0.005 U	0.005 U	0.002	0.014
	01/22/03		7.35	0.005 U	0.005 U	0.003	0.01 U

Page 1 of 3

Table 6-2 Phibro-Tech, Inc. Groundwater Analytical Results - April 2004 Metals and pH Analytical Summary

Well lumber	Sample Date	Sample Type	рН	Cadmium (0.005)	Chromium (0.05)	Cr (+6)	Copper (1.3)
MW-06D	04/20/04		7.56	0.005 U	0.005 U	0.0032	0.01 U
MM 07					0.005.11	0.004.11	0.000
MW-07	04/24/03		6.97	0.005 U	0.005 U	0.001 U	0.032
	07/30/03		6.75	0.005 U	0.005 U	0.00038 O-09	0.01 U
	10/23/03		7.31	0.005 U	0.005 U	0.001 U	0.01 U
	01/22/04		6.88	0.005 U	0.005 U	0.001 U	0.01 U
	04/21/04		7.35	0.005 U	0.005 U	0.001 M 2,U	0.01 U
MW-09	04/25/03		7.24	0.005 U	0.27	0.25	0.01 U
		K	6.83	0.005 U	0.28	0.26	0.01 U
	07/31/03		6.69	0.005 U	2.2	2.1	0.01 U
		K	6.66	0.005 U	2.2	2.2	0.01 U
	10/22/03		7.23	0.01 RL-1,U	13	13	0.02 RL-1,U
		κ	7.26	0.01 RL-1,U	13	13	0.02 RL-1,U
	01/23/04		6.84	0.005 U	2.4	2.8	0.01 U
		κ	6.85	0.005 U	2.4	2.7	0.01 U
	04/21/04		6.87	0.005 U	3.4	2.9	0.01 U
		K	6.96	0.005 U	4.4	4.1	0.01 U
MW-11	04/25/03		7.29	0.005 U	0.005 U	0.001 U	0.01 U
	07/31/03		6.73	0.005 U	0.005 U	0.0012	0.01 U
	10/23/03		7.23	0.005 U	0.005 U	0.001 U	0.01 U
	01/23/04		7.21	0.005 U	0.005 U	0.001 U	0.01 U
	04/21/04		7.29	0.005 U	0.005 U	0.001 U	0.01 U
MW-14S	04/24/03		7.24	0.005 U	0.02	0.001 U	0.029
	07/30/03		6.86	0.0066	0.15	0.12	0.052
	10/23/03		6.71	0.005 U	0.33	0.99	0.03
	01/22/04		6.7	0.01 RL-3,U	0.95	0.44	0.037
	04/21/04		7.01	0.01 RL-1,U	0.31	0.33	0.023
MW-15D	04/23/03		7.48	0.005 U	0.005 U	0.001 U	0.01 U
	07/30/03		7.26	0.005 U	0.005 U	0.0003 O-09,U	0.01 U
	10/21/03		7.72	0.005 U	0.005 U	0.001 U	0.01 U
	01/22/04		7.2	0.005 U	0.0056	0.0064	0.01 U
	04/21/04		7.6	0.005 U	0.0067	0.007	0.01 U
MW-15S	04/24/03		7.19	0.005 U	0.0064	0.0059	0.01 U
	07/30/03		7.02	0.005 U	0.005 U	0.0022 O-09	0.01 U
	10/22/03		7.02	0.0057	0.005 U	0.0022 O-03	0.01 U
			7.06	0.013	0.005 U	0.001 U	0.01 U
	01/22/04 04/21/04		7.06	0.013	0.005 U	0.001 U	0.01 U
MW-16	04/24/03		7.12	0.005 U	0.0051	0.0041	0.01 U
	07/31/03		6.82	0.005 U	0.005 U	0.004	0.01 U
	10/22/03		7.34	0.005 U	0.005 U	0.001 U	0.01 U

Page 2 of 3

Table 6-2 Phibro-Tech, Inc. Groundwater Analytical Results - April 2004 Metals and pH Analytical Summary

Well	Sample	Sample		Cadmium	Chromium		Copper	
Number	Date	Туре	рН	(0.005)	(0.05)	Cr (+6)	(1.3)	
MW-16	01/23/04		6.98	0.005 U	0.005 U	0.0026	0.01 U	
	04/21/04		7.21	0.005 U	0.005 U	0.001 U	0.01 U	

Notes:

California Maximum Contaminant Levels (MCLs) are shown in parenthesis. Secondary MCL is shown for copper.

All concentrations are reported in milligrams per liter (mg/L).

Metals analyzed by EPA Method 6010B, except for Cr (+6), which was analyzed by EPA Method 7199.

pH analyzed by EPA Method 150.1.

U = Not detected at a concentration greater than the reporting limit shown

E = Indicates that the reported concentration is above the calibration range for the instrument. Concentration reported is an estimate only.

M-2 = The matrix spike and/or matrix spike duplicate were below the acceptance limits due to sample matrix interference.

RL-1 = Reporting Limit elevated due to matrix interference.

RL-3 = Reporting Limit elevated due to interference from other analytes.

O-09 = This sample was received with the EPA recommended holding time expired.

Sample Type: K = Split sample

Section 7 Statistical Evaluation

The following sections contain a statistical evaluation of the analytical results designed to determine if on-site wells have been impacted by metals, BTEX compounds (benzene, toluene, ethylbenzene, xylenes) or TCE (trichloroethene). The statistical evaluation was performed using the Compliance and Remediation Statistics (CARStat) software. A detailed explanation of the software and statistical methods used is presented in Gibbons (1994). The statistical methods used are in compliance with applicable California Code of Regulations (Title 22, Division 4.5, Chapter 14, Article 6, Section 66264.97 [General Water Quality Monitoring and System Requirements]).

7.1 Determination of Background Prediction Interval Overview

The prediction interval is a method that is typically used in compliance monitoring to compare on-site or downgradient monitoring well analytical data to upgradient or background monitoring well data. The prediction interval represents the range for which the next measurement will be contained at a specified confidence level. For instance, an upper prediction limit (UPL) with 95 percent coverage and a 95 percent confidence level represents a value which, with 95 percent confidence, any new measurement in the background well will be exceeded less than 5 percent of the time.

For this evaluation, CDM has calculated UPLs for the background well (MW-1S) and compared this value to each individual on-site analytical result using a confidence level and coverage of 95 percent. When on-site wells exceed the background UPL consistently, it suggests that a significant difference from background may exist.

Results

The statistical evaluation results are presented in Appendix F. Appendix F-1 includes all of the tabular data output from the CARStat evaluation. Table 1 lists the background data from monitoring well MW-1S that were used to calculate the UPLs. Table 2 lists the current on-site data (from the April 2004 monitoring event). The frequencies of detection for each parameter in the background well and onsite wells is provided in Table 3. Table 4 lists the background well distribution results, based on the Shapiro-Wilk test for normality. In all cases except for TCE, the low detection frequencies required the use of the nonparametric prediction limit (a normal prediction limit was used for TCE). Table 5 presents background well summary statistics, including the prediction limit and associated confidence level. A UPL calculation sheet for each compound is presented in Appendix F-2.

7.2 Comparison of Background and On-site Wells Overview

The on-site monitoring well data were compared to the UPL for each compound. All historical and current on-site analytical data are compared to the background UPL in verification resampling mode. Verification resampling means that the test fails if a compound in on-site monitoring wells exceeds background if it is higher than the UPL for 2 consecutive monitoring events. Constituent-location combinations that failed the current statistical evaluation or need to be verified are highlighted by the statistical program.

Results

The results of the UPL tests are included in Appendixes F-1 through F-3. Appendix F-1 lists the constituent-location combinations that failed the current evaluation. Appendix F-3 shows concentration versus time charts for each constituent and on-site well location. All data are shown on the concentration versus time charts and the exceedances are flagged on the individual charts.

A summary of the statistical evaluation is presented in Table 7-1. Exceedances were observed for MW-1D (benzene), MW-3 (benzene, and TCE), MW-4 (benzene, hexavalent chromium, total chromium, cadmium, and TCE), MW-6B (TCE), MW-7 (TCE), MW-9 (hexavalent chromium, total chromium, benzene, toluene, ethylbenzene, total xylenes, and TCE), MW-14S (hexavalent chromium, total chromium, benzene, and TCE), MW-15S (hexavalent chromium and TCE) and MW-16 (ethylbenzene). These results are very similar to those presented in previous monitoring reports. However, only those compounds actually detected above the prediction limits were identified as an exceedance. The compounds with detection limits (for non-detects) that were higher than the background UPL were not flagged as an exceedance.

Table 7-1
Phibro-Tech, Inc.
Comparison of Background and On-Site Wells Quarterly Data
January 1989 to April 2004

Parameter	MW-1D	MW-3	MW-4	MW-4A	MW-6B	MW-7	MW-9	MW-11	MW-14S	MW-15S	MW-15D	MW-16
Metals (mg/L)							<u> </u>			L	l	<u> </u>
Hexavalent		T							-	().		
chromium 1									a turk akan			
Total chromium 1			*				aging *					
Cadmium ¹												
Copper ¹												
Aromatics (μg/L))						<u> </u>	<u> </u>	L	I		
Benzene ¹	*	1.4	*				**		minu sum			
Toluene ¹							*					
Ethylbenzene ¹							engri k synhill	. 189 * .				andre X istan
Total xylenes 1							1.10 p. 11					
Halocarbons (μο	j/L)											
Trichloroethene 2		*	*		*	*	* *	11 × 1	*	*		
1	Background	d to onsite us	ing nonparam	netric predicti	ion limit							
2	_		mparison usir			mit						
*	***************************************		ver backgrou		p							
	ACONDICION SERVICION	ance observe		i i G								
	No exceed	ance observe	·u									

Section 8

Assessment of Quarterly Groundwater Monitoring Program Status

In the October 1990 groundwater monitoring report, changes in the quarterly groundwater-sampling program were proposed. These changes were first implemented during the April 1991 sampling event and included reducing the number of wells sampled and parameters analyzed in each well. The current groundwater-sampling program will only be used as an interim program, until the Site Conceptual Model has been completed and the draft sampling and analysis plan finalized. Based on approximately 18 years of quarterly monitoring at the site, off-site migration of the soluble metals plume has not been observed.

Beginning with the January 1997 sampling event, EPA Method 8010/8020 was replaced with EPA Method 8260. This change was requested by the analytical laboratory, which no longer performs 8010/8020 analysis. Methyl tertiary butyl ether (MTBE) analysis was performed once, in January 1997. Since there were no detections of MTBE in any of the groundwater samples, this analysis was discontinued. Starting with the October 2000 sampling event, the analytical method for hexavalent chromium was changed from EPA Method 7196 to 7199. DTSC requested that six selected wells be analyzed for 1,4-dioxane in July 2001 and October 2001. After these two events, 1,4-dioxane analysis was discontinued. In late 2002, DTSC requested that PTI perform Appendix IX sampling and analysis on an annual basis from selected wells. PTI subsequently sampled the four proposed Pond 1 monitoring wells (MW-04, MW-07, MW-11, and MW-14S) for the Appendix IX analytical suite on December 30, 2002. Appendix IX results were presented in the October 2002 Quarterly Sampling Report and 2002 Annual Groundwater Monitoring Report submitted February 28, 2003. Appendix IX sampling and analysis was also performed during the October 2003 sampling event, with the results discussed in Appendix G of this document.

Statistical analysis was historically conducted annually. Beginning with the October 1993 sampling event, statistical analysis has been performed on a quarterly basis, as requested by DTSC.

During 2000, three sampling events were performed (January, April and October). Sampling and reporting frequency was changed from quarterly to semi-annual after the April 2000 sampling event. However, quarterly groundwater monitoring resumed in April 2001 at the request of DTSC.

The analytical parameters for the April 2004 quarterly monitoring were as follows:

Wells	Volatile Organic Compounds (EPA 8260B)	Chromium, Cadmium, Copper (EPA 6010B)	Hexavalent Chromium (EPA 7199)	pH (EPA 150.1)
MW-01S	Х	Х	Х	Х
MW-01D	X	Х	X	Х
MW-03	X	X	X	Х
MW-04	X	Х	Х	Х
MW-04A	Х	Х	X	Х
MW-06B	Х	Х	X	Х
MW-06D	Х	Х	Х	Х
MW-07	Х	X	X	Х
MW-09	X	X	X	Х
MW-11	X	Х	X	Х
MW-14S	X	Х	Х	X
MW-15S	X	X	X	X
MW-15D	X	X	X	Х
MW-16	Х	Х	X	X

The next quarterly event will occur in July 2004. Gauging and sampling will be conducted using the same procedures and same locations as the April 2004 event.

Section 9 References

Camp Dresser & McKee Inc. (CDM), January 2004 Quarterly Sampling Report, Santa Fe Springs, California, April 19, 2004.

CDM, Revised Water Quality Sampling and Analysis Plan Pond 1 Groundwater Monitoring, March 14, 1996.

CDM, Groundwater Modeling Study, Southern California Chemical, January 1993.

CDM, RCRA Facility Investigation Work Plan Addendum, Southern California Chemical, February 13, 1992, Revised March 6, 1992.

CDM, RCRA Facility Investigation Report, Southern California Chemical, December 6, 1991.

CDM, RCRA Facility Investigation Work Plan, Southern California Chemical, June 26, 1990.

CDM, Current Conditions Report, Southern California Chemical, June 8, 1990.

CDM, Draft Environmental Assessment, Southern California Chemical, January 1986.

City of Santa Fe Springs, 2001 Annual Water Quality Report, 2001.

Gibbons, R.D., 1994. Statistical Methods for Groundwater Monitoring, John Wiley and Sons, New York.

J.H. Kleinfelder & Associates, Quality Assurance Project Plan, Southern California Chemical, May 1988.

McLaren Hart, Subsurface Soil Investigation at the Former Underground Storage Tank Location – Pilot Chemical Company, Santa Fe Springs, California, October 16, 1991.

USEPA, 1992. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities - Addendum to Interim Final Guidance.

USEPA, 1989. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities - Interim Final Guidance.

Appendix A General Analytical Detection Limits

Table A-1 Phibro-Tech, Inc. Metals Typical Detection Limits

Analytical	Analytical	Reporting	
Method	Parameter	Limit	Units
EPA 6010B-Diss	CADMIUM	0.005	mg/l
EPA 6010B-Diss	CHROMIUM	0.005	mg/l
EPA 7199	CHROMIUM (VI)	0.001	mg/l
EPA 6010B-Diss	COPPER	0.01	mg/l

CDM Page 1 of 1

Table A-2 Phibro-Tech, Inc. Volatile Organic Compounds Typical Detection Limits

Analytical Method	Analytical Parameter	Reporting Limit	Units
EPA 8260B	1,1,1,2-TETRACHLOROETHANE	1	ug/l
EPA 8260B	1,1,1-TRICHLOROETHANE	1	ug/i
EPA 8260B	1,1,2,2-TETRACHLOROETHANE	1	ug/l
EPA 8260B	1,1,2-TRICHLOROETHANE	1	ug/l
EPA 8260B	1,1-DICHLOROETHANE	1	ug/l
EPA 8260B	1,1-DICHLOROETHENE	1	ug/l
EPA 8260B	1,1-DICHLOROPROPENE	1	ug/l
EPA 8260B	1,2,3-TRICHLOROBENZENE	1	ug/l
EPA 8260B	1,2,3-TRICHLOROPROPANE	1	ug/l
EPA 8260B	1,2,4-TRICHLOROBENZENE	1	ug/l
EPA 8260B	1,2,4-TRIMETHYLBENZENE	1	ug/l
EPA 8260B	1,2-DIBROMO-3-CHLOROPROPANE	5	ug/l
EPA 8260B	1,2-DIBROMOETHANE	1	ug/l
EPA 8260B	1,2-DICHLOROBENZENE	1	ug/l
EPA 8260B	1,2-DICHLOROETHANE	0.5	ug/l
EPA 8260B	1,2-DICHLOROPROPANE	1	ug/l
EPA 8260B	1,3,5-TRIMETHYLBENZENE	1	ug/l
EPA 8260B	1,3-DICHLOROBENZENE	1	ug/l
EPA 8260B	1,3-DICHLOROPROPANE	1	ug/l
EPA 8260B	1,4-DICHLOROBENZENE	1	ug/l
EPA 8260B	2,2-DICHLOROPROPANE	1	ug/l
EPA 8260B	2-CHLOROTOLUENE	1	ug/l
EPA 8260B	4-CHLOROTOLUENE	1	ug/l
EPA 8260B	BENZENE	0.5	ug/l
EPA 8260B	BROMOBENZENE	1	ug/l
EPA 8260B	BROMOCHLOROMETHANE	1	ug/l
EPA 8260B	BROMODICHLOROMETHANE	1	ug/l
EPA 8260B	BROMOFORM	1	ug/l
EPA 8260B	BROMOMETHANE	1	ug/l
EPA 8260B	CARBON TETRACHLORIDE	0.5	ug/l
EPA 8260B	CHLOROBENZENE	1	ug/l
EPA 8260B	CHLORODIBROMOMETHANE	1	ug/l
EPA 8260B	CHLOROETHANE	1	ug/l
EPA 8260B	CHLOROFORM	1	ug/l
EPA 8260B	CHLOROMETHANE	1	ug/l
EPA 8260B	CIS-1,2-DICHLOROETHENE	1	ug/l
EPA 8260B	CIS-1,3-DICHLOROPROPENE	0.5	ug/l
EPA 8260B	DIBROMOMETHANE	1	ug/l
EPA 8260B	DICHLORODIFLUOROMETHANE	5	ug/l

Page 1 of 2

Table A-2 Phibro-Tech, Inc. Volatile Organic Compounds Typical Detection Limits

-	Analytical Method	Analytical Parameter	Reporting Limit	Units
	EPA 8260B	ETHYLBENZENE	1	ug/l
**	EPA 8260B	HEXACHLOROBUTADIENE	1	ug/l
	EPA 8260B	ISOPROPYLBENZENE	1	ug/l
	EPA 8260B	M,P-XYLENE	1	ug/l
	EPA 8260B	METHYLENE CHLORIDE	5	ug/l
	EPA 8260B	NAPHTHALENE	1	ug/l
_	EPA 8260B	N-BUTYLBENZENE	1	ug/i
	EPA 8260B	N-PROPYLBENZENE	1	ug/l
	EPA 8260B	O-XYLENE	1	ug/l
	EPA 8260B	P-ISOPROPYLTOLUENE	1	ug/l
	EPA 8260B	SEC-BUTYLBENZENE	1	ug/l
	EPA 8260B	STYRENE	1	ug/l
	EPA 8260B	TERT-BUTYLBENZENE	1	ug/l
	EPA 8260B	TETRACHLOROETHENE	1	ug/l
· .	EPA 8260B	TOLUENE	1	ug/l
_	EPA 8260B	TOTAL XYLENES	2	ug/l
	EPA 8260B	TRANS-1,2-DICHLOROETHENE	1	ug/l
منت	EPA 8260B	TRANS-1,3-DICHLOROPROPENE	0.5	ug/l
	EPA 8260B	TRICHLOROETHENE	1	ug/l
	EPA 8260B	TRICHLOROFLUOROMETHANE	1	ug/l
ن	EPA 8260B	VINYL CHLORIDE	0.5	ug/l

Appendix B Historical Sampling Results

Table B-1 Phibrotech, Inc. Groundwater Elevations

شف			Total Depth	MP		Well	Depth to Water	Total Depth	Calculated	Groundwater
	Well ID	Intervals (feet bgs)	Constructed (feet bgs)	Elevation (feet MSL)	Date	Headspace* (ppm)	(feet below MP)	Measured (feet bgs)	Casing Fill (feet)	Elevation (feet MSL)
		(leet bgs)	71.5	151.01	10/19/98	2.0 / 0.0	36.14	71.4	0.1	114.87
			71.5	151.01	01/19/99	31.4 / 1.9	39.03	71.4	0.0	111.98
			71.5	151.01	04/20/99	2.3 / 1.1	39.16	71.4	0.1	111.85
			71.5	151.01	07/20/99	1.7 / 1.4	39.12	71.4	0.1	111.89
			71.5	151.01	10/22/99	0.0 / 0.0	46.94	71.4	0.1	104.07
			71.5	151.01	01/25/00	4.0 / 0.0	50.92	71.5	0.0	100.09
_			71.5	151.01	04/24/00	1.2 / 0.0	44.45	71.4	0.1	106.56
			71.5	151.01	10/17/00	0.0 / 0.0	44.19	71.2	0.3	106.82
			71.5	151.01	10/17/00	0.0 / 0.0	44.19	71.2	0.3	106.82
-			71.5	151.01	04/17/01	0.0 / 0.0	41.88	71.4	0.1	109.13
			71.5	151.01	07/17/01	0.0 / 0.0	41.17	71.4	0.1	109.84
			71.5	151.01	10/16/01	0.0 / 0.0	45.74	71.6		105.27
			71.5	151.01	01/15/02	0.0 / 0.0	44.64	71.2	0.3	106.37
			71.5	151.01	04/16/02	0.0 / 0.0	44.02	71.3	0.3	106.99
			71.5	151.01	07/24/02	0.0 / 0.0	48.44	71.0	0.5	100.55
			71.5	151.01	10/22/02	30.8 / 0.1	51.98	71.0	0.5	99.03
			71.5	151.01	01/24/03	0.4 / 0.1	50.10	71.0	0.5	100.91
			71.5	151.01	04/23/03	4.0 / 0.1	46.02	71.46	0.0	104.99
			71.5	151.01	07/29/03	0.6 / 0.0	49.02	71.40	0.0	101.99
			71.5	151.01	10/21/03	0.0 / 0.0	55.02	71.43	0.1	95.99
			71.5	151.01	01/21/04	0.0 / 0.0	56.77	71.49	0.0	94.24
_			71.5	151.01	04/20/04	0.4 / 0.4	55.88	71.43	0.0	95.13
			71.5	131.01	04/20/04	0.4 / 0.4	33.00	7 1.47	0.0	90.10
	MW-16	42-62	62.5	150.22	01/13/98	33.1 / 0.0	38.30	61.9	0.6	111.92
-		12 02	62.5	150.22	04/21/98	9.1 / 0.1	33.43	61.9	0.6	116.79
			62.5	150.27	07/14/98	5.0 / 0.4	32.27	62.0	0.5	118.00
			62.5	150.27	10/19/98	16.0 / 0.0	34.85	62.0	0.5	115.42
			62.5	150.27	01/19/99	51.0 / 3.4	37.59	62.0	0.5	112.68
			62.5	150.27	04/20/99	14.0 / 1.1	37.68	62.0	0.5	112.59
			62.5	150.27	07/20/99	10.2 / 1.4	37.84	62.0	0.5	112.43
			62.5	150.27	10/22/99	35.7 / 0.0	45.46	62.0	0.5	104.81
-			62.5	150.27	01/25/00	9.0 / 0.0	49.24	62.4	0.1	101.03
_			62.5	150.27	04/24/00	/	43.02	62.0	0.5	107.25
			62.5	150.27	10/17/00	6.3 / 0.0	42.76	61.8	0.8	107.51
			62.5	150.27	10/25/00	6.3 / 0.0	42.76	61.8	0.8	107.51
تنت			62.5	150.27	04/17/01	3.2 / 0.0	40.40	62.0	0.5	109.87
			62.5	150.27	07/17/01	3.2 / 0.0	39.93	61.8	0.7	110.34
			62.5	150.27	10/16/01	0.0 / 0.0	44.29	62.2	0.3	105.98
			62.5	150.27	01/15/02	0.6 / 0.0	43.10	62.2	0.3	107.17
ننت			62.5	150.27	04/16/02	7.7 / 0.1	42.67	61.9	0.6	107.60
			62.5	150.27	07/24/02	0.8 / 0.0	46.96	62.2	0.3	103.31
			62.5	150.27	10/22/02	2.8 / 0.0	50.43	62.2	0.3	99.84
rieseis			62.5	150.27	01/24/03	2.1 / 0.1	48.50	62.2	0.3	101.77
_			62.5	150.27	04/23/03	2.8 / 0.1	44.62	62.13	0.4	105.65
			62.5	150.27	07/29/03	3.7 / 0.0	44.49	62.12	0.4	105.78
			62.5	150.27	10/21/03	/ 0.0	53.32	62.11	0.4	96.95
			62.5	150.27	01/21/04	1.4 / 0.0	54.94	62.11	0.4	95.33
			62.5	150.27	04/20/04	36.0 / 0.2	54.30	62.1	0.4	95.97

MP = Measuring point (top of steel casing)

bgs = below ground surface

ppm = parts per million

NM = Not measured

Note: Depth to water measurements collected on April 20, 2004 prior to purging/sampling on-site wells.

CDM

^{--- =} Not measured or not calculated.

MSL = mean sea level

^{*} Measured with PID prior to sampling (casing/background).

Table B-1 Phibrotech, Inc. Groundwater Elevations

	Perforated	Total Depth	MP		Well	Depth to Water	Total Depth	Calculated	Groundwater
Well ID	Intervals	Constructed	Elevation	Date	Headspace*	(feet below MP)	Measured	Casing Fill	Elevation (feet
	(feet bgs)	(feet bgs)	(feet MSL)		(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)

Note: Depth to water measurements collected on April 20, 2004 prior to purging/sampling on-site wells.

Table B-1 Phibrotech, Inc. Groundwater Elevations

Well ID	Perforated Intervals (feet bgs)	Total Depth Constructed (feet bgs)	MP Elevation (feet MSL)	Date	Well Headspace* (ppm)	Depth to Water (feet below MP)	Total Depth Measured (feet bgs)	Calculated Casing Fill (feet)	Groundwater Elevation (feet MSL)
		71.5	151.01	10/19/98	2.0 / 0.0	36.14	71.4	0.1	114.87
		71.5	151.01	01/19/99	31.4 / 1.9	39.03	71.5	0.0	111.98
		71.5	151.01	04/20/99	2.3 / 1.1	39.16	71.4	0.1	111.85
		71.5	151.01	07/20/99	1.7 / 1.4	39.12	71.4	0.1	111.89
		71.5	151.01	10/22/99	0.0 / 0.0	46.94	71.4	0.1	104.07
		71.5	151.01	01/25/00	4.0 / 0.0	50.92	71.5	0.0	100.09
		71.5	151.01	04/24/00	1.2 / 0.0	44.45	71.4	0.1	106.56
		71.5	151.01	10/17/00	0.0 / 0.0	44.19	71.2	0.3	106.82
		71.5	151.01	10/25/00	0.0 / 0.0	44.19	71.2	0.3	106.82
		71.5	151.01	04/17/01	0.0 / 0.0	41.88	71.4	0.1	109.13
		71.5	151.01	07/17/01	0.0 / 0.0	41.17	71.4	0.1	109.84
		71.5	151.01	10/16/01	0.0 / 0.0	45.74	71.6		105.27
		71.5	151.01	01/15/02	0.0 / 0.0	44.64	71.2	0.3	106.37
		71.5	151.01	04/16/02	0.0 / 0.0	44.02	71.3	0.2	106.99
		71.5	151.01	07/24/02	0.1 / 0.1	48.44	71.0	0.5	102.57
		71.5	151.01	10/22/02	30.8 / 0.1	51.98	71.0	0.5	99.03
		71.5	151.01	01/24/03	0.4 / 0.1	50.10	71.0	0.5	100.91
		71.5	151.01	04/23/03	4.0 / 0.1	46.02	71.46	0.0	104.99
		71.5	151.01	07/29/03	0.6 / 0.0	49.02	71.40	0.1	101.99
		71.5	151.01	10/21/03	0.0 / 0.0	55.02	71.43	0.1	95.99
		71.5	151.01	01/21/04	0.0 / 0.0	56.77	71.49	0.0	94.24
		71.5	151.01	04/20/04	0.4 / 0.4	55.88	71.47	0.0	95.13
M W-16	42-62	62.5	150.22	01/13/98	33.1 / 0.0	38.30	61.9	0.6	111.92
		62.5	150.22	04/21/98	9.1 / 0.1	33.43	61.9	0.6	116.79
		62.5	150.27	07/14/98	5.0 / 0.4	32.27	62.0	0.5	118.00
		62.5	150.27	10/19/98	16.0 / 0.0	34.85	62.0	0.5	115.42
		62.5	150.27	01/19/99	51.0 / 3.4	37.59	62.0	0.5	112.68
		62.5	150.27	04/20/99	14.0 / 1.1	37.68	62.0	0.5	112.59
		62.5	150.27	07/20/99	10.2 / 1.4	37.84	62.0	0.5	112.43
		62.5	150.27	10/22/99	35.7 / 0.0	45.46	62.0	0.5	104.81
		62.5	150.27	01/25/00	9.0 / 0.0	49.24	62.4	0.1	101.03
		62.5	150.27	04/24/00	/	43.02	62.0	0.5	107.25
		62.5	150.27	10/17/00	6.3 / 0.0	42.76	61.8	0.8	107.51
		62.5	150.27	10/25/00	6.3 / 0.0	42.76	61.8	8.0	107.51
		62.5	150.27	04/17/01	3.2 / 0.0	40.40	62.0	0.5	109.87
		62.5	150.27	07/17/01	3.2 / 0.0	39.93	61.8	0.7	110.34
		62.5	150.27	10/16/01	0.0 / 0.0	44.29	62.2	0.3	105.98
		62.5	150.27	01/15/02	0.6 / 0.0	43.10	62.2	0.3	107.17
		62.5	150.27	04/16/02	7.7 / 0.1	42.67	61.9	0.6	107.60
		62.5	150.27	07/24/02	0.8 / 0.0	46.96	62.2	0.3	103.31
		62.5	150.27	10/22/02	2.8 / 0.0	50.43	62.2	0.3	99.84
		62.5	150.27	01/24/03	2.1 / 0.1	48.50	62.2	0.3	101.77
		62.5	150.27	04/23/03	2.8 / 0.1	44.62	62.13	0.4	105.65
		62.5	150.27	07/29/03	3.7 / 0.0	44.49	62.12	0.4	105.78
		62.5	150.27	10/21/03	/ 0.0	53.32	62.11	0.4	96.95
		62.5	150.27	01/21/04	1.4 / 0.0	54.94	62.11	0.4	95.33

MP = Measuring point (top of steel casing)

--- = Not measured or not calculated.

bgs = below ground surface

ppm = parts per million

NM = Not measured

MSL = mean sea level

^{*} Measured with PID prior to sampling (casing/background).

Table B-1 Phibrotech, Inc. Groundwater Elevations

Well ID	Perforated Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth Measured	Calculated Casing Fill	Groundwater Elevation (feet
VVCII ID	(feet bgs)	(feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
MW-14S	46-72	71.5	150.50	01/13/98	15.6 / 0.0	39.07	70.8	8.0	111.43
-		71.5	150.50	04/21/98	1.0 / 0.1	34.03	70.7	8.0	116.47
		71.5	150.50	07/14/98	0.1 / 0.0	32.71	70.8	0.7	117.79
		71.5	150.50	10/19/98	2.0 / 0.0	35.31	70.8	8.0	115.19
		71.5	150.50	01/19/99	28.6 / 13.5	38.19	70.8	8.0	112.31
		71.5	150.50	04/20/99	7.0 / 1.0	38.29	70.7	8.0	112.21
		71.5	150.50	07/20/99	17.2 / 1.4	38.31	70.7	8.0	112.19
		71.5	150.50	10/22/99	53.0 / 0.0	46.19	70.8	0.7	104.31
		71.5	150.50	01/25/00	71.0 / 0.0	50.07	71.0	0.5	100.43
		71.5	150.50	04/24/00	23.0 / 0.0	43.59	70.9	0.6	106.91
		71.5	150.50	10/17/00	19.0 / 0.0	43.44	70.4	1.1	107.06
		71.5	150.50	10/25/00	19.0 / 0.0	43.44	70.4	1.1	107.06
		71.5	150.50	04/17/01	15.2 / 0.1	41.08	70.4	1.1	109.42
		71.5	150.54	07/17/01	15.2 / 0.1	40.47	70.9	0.6	110.07
		71.5	150.54	10/16/01	4.0 / 0.0	45.00	70.9	0.6	105.54
		71.5	150.54	01/15/02	2.6 / 0.0	43.80	70.6	0.9	106.74
		71.5	150.54	04/16/02	9.6 / 0.0	43.27	70.6	0.9	107.27
		71.5	150.54	07/24/02	19.0 / 0.0	47.70	71.0	0.5	102.84
		71.5	150.54	10/22/02	31.7 / 0.2	51.24	71.0	0.5	99.30
		71.5	150.54	01/24/03	22.7 / 0.1	49.27	71.0	0.5	101.27
		71.5	150.54	04/23/03	45.8 / 0.0	45.19	70.76	0.7	105.35
		71.5	150.54	07/29/03	18.4 / 0.0	48.30	70.82	0.7	102.24
		71.5	150.54	10/21/03	5.7 / 0.0	54.18	70.75	0.8	96.36
		71.5	150.54	01/21/04	2.2 / 0.0	55.89	70.87	0.6	94.65
		71.5	150.54	04/20/04	15.0 / 1.0	55.08	70.77	0.7	95.46
MW-15D	108.5-123.5	5 123.8	150.96	01/13/98	0.0 / 0.0	39.99	123.6	0.2	110.97
		123.8	150.96	04/21/98	11.7 / 0.1	34.92	123.8	0.0	116.04
		123.8	150.96	07/14/98	0.0 / 0.0	33.63	123.8	0.0	117.33
		123.8	150.96	10/19/98	1.4 / 1.4	36.24	124.1		114.72
		123.8	150.96	01/19/99	28.4 / 2.5	39.04	124.0		111.92
		123.8	150.96	04/20/99	1.1 / 0.0	39.15	123.9		111.81
		123.8	150.96	07/20/99	1.4 / 1.4	39.22	123.9		111.74
		123.8	150.96	10/22/99	0.0 / 0.0	47.08	124.0		103.88
		123.8	150.96	01/25/00	0.0 / 0.0	50.95	124.3		100.01
	,	123.8	150.96	04/24/00	0.0 / 0.0	44.42	124.0		106.54
		123.8	150.96	10/17/00	1.8 / 0.0	44.27	123.7	0.1	106.69
		123.8	150.96	10/25/00	1.8 / 0.0	44.27	123.7	0.1	106.69
		123.8	150.96	04/17/01	0.0 / 0.0	41.92	123.4	0.4	109.04
		123.8	150.96	07/17/01	0.0 / 0.0	41.34	123.8	0.0	109.62
		123.8	150.96	10/16/01	0.0 / 0.0	45.88	123.9		105.08
		123.8	150.96	01/15/02	0.0 / 0.0	44.64	124.5		106.32
		123.8	150.96	04/16/02	0.0 / 0.0	44.13	123.8	0.0	106.83
		123.8	150.96	07/24/02	0.0 / 0.0	48.60	123.8	0.0	102.36
		123.8	150.96	10/22/02	38.1 / 0.0	51.95	123.8	0.0	99.01
		123.8	150.96	01/24/03	0.1 / 0.1	50.11	123.8	0.0	100.85
		123.8	150.96	04/23/03	0.0 / 0.0	46.10	124.05		104.86
		123.8	150.96	07/29/03	0.2 / 0.0	49.24	124.92		101.72
		123.8	150.96	10/21/03	1.1 / 0.0	55.27	124.10		95.69
		123.8	150.96	01/21/04	0.7 / 0.0	56.87	124.05		94.09
		123.8	150.96	04/20/04	0.4 / 0.4	55.98	124.06		94.98
M\\\/_150	51.5-71.5	71.5	151.01	01/12/00	00/00	30.0F	74 5	0.0	111.00
1010 V- 100	01.0-71.0	71.5 71.5		01/13/98 04/21/98	0.9 / 0.0	39.95	71.5	0.0	111.06
		71.5 71.5	151.01 151.01		237.0 / 0.1	34.96 33.54	71.4 71.4	0.1	116.05
		/1.5	151.01	07/14/98	0.0 / 0.0	33.54	71.4	0.1	117.47

Table B-1 Phibrotech, Inc. Groundwater Elevations

		Total Depth	MP		Well	Depth to Water	Total Depth	Calculated	Groundwater
Well ID	Intervals	Constructed	Elevation	Date	Headspace*	(feet below MP)	Measured	Casing Fill	Elevation (feet
	(feet bgs)	(feet bgs)	(feet MSL)		(ppm)		(feet bgs)	(feet)	MSL)
		93.3	151.68	07/29/03	4.2 / 0.0	48.43	93.60		103.25
		93.3	151.68	10/21/03	1.0 / 0.0	54.20	93.60		97.48
		93.3	151.68	01/21/04	0.0 / 0.0	55.72	93.70		95.96
		93.3	151.68	04/20/04	1.6 / 0.2	55.05	93.6		96.63
MW-13S	50.3-70.3	70.3	151.51	01/13/98	26.0 / 0.0	39.10		***	112.41
		70.3	151.51	04/21/98	6.5 / 0.1	34.03			117.48
		70.3	151.72	07/14/98	2.4 / 0.0	33.16			118.56
		70.3	151.72	10/19/98	17.0 / 0.0	35.44			116.28
		70.3	151.72	01/19/99	65.1 / 0.8	38.51			113.21
		70.3	151.72	04/20/99	2.3 / 1.1	38.46			113.26
		70.3	151.72	07/20/99	5.2 / 2.1	38.71			113.01
		70.3	151.72	10/22/99	13.6 / 0.0	46.37			105.35
		70.3	151.72	01/25/00	7.0 / 0.0	50.04			101.68
		70.3	151.72	04/24/00	0.0 / 0.0	43.70			108.02
		70.3	151.72	10/17/00	3.8 / 0.0	43.52			108.20
		70.3	151.72	10/25/00	3.8 / 0.0	43.52			108.20
		70.3	151.72	04/17/01	2.1 / 0.0	41.09			110.63
		70.3	151.72	07/17/01	2.1 / 0.0	40.76			110.96
		70.3	151.72	10/16/01	0.9 / 0.0	45.11			106.61
		70.3	151.72	01/15/02	/	43.89	69.0	1.3	107.83
		70.3	151.72	04/16/02	0.8 / 0.0	43.44	69.1	1.2	108.28
		70.3	151.72	07/24/02	3.4 / 0.0	47.78	69.3	1.0	103.94
		70.3	151.72	10/22/02	29.3 / 0.0	51.20	69.3	1.0	100.52
		70.3	151.72	01/24/03	3.6 / 0.0	49.16	69.3	1.0	102.56
		70.3	151.72	04/23/03	3.8 / 0.1	45.30	69.38	0.9	106.42
		70.3	151.72	07/29/03	4.6 / 0.1	48.44	69.24	1.1	103.28
		70.3	151.72	10/21/03	1.9 / 0.1	54.26	69.25	1.1	97.46
		70.3	151.72	01/21/04	2.9 / 0.0	55.70	69.47	8.0	96.02
		70.3	151.72	04/20/04	2.2 / 0.2	55.02	69.44	0.9	96.70
MW-14D	88-103	109.0	150.56	01/13/98	0.0 / 0.0	39.12			111.44
		109.0	150.56	04/21/98	0.1 / 0.1	34.09			116.47
		109.0	150.56	07/14/98	0.0 / 0.0	32.78			117.78
		109.0	150.56	10/19/98	7.0 / 0.0	35.38			115.18
		109.0	150.56	01/19/99	21.2 / 4.3	38.24			112.32
		109.0	150.56	04/20/99	0.0 / 0.0	38.35			112.21
		109.0	150.56	07/20/99	1.4 / 1.4	38.37			112.19
		109.0	150.56	10/22/99	0.0 / 0.0	46.21			104.35
		109.0	150.56	01/25/00	0.0 / 0.0	50.10			100.46
		109.0	150.56	04/24/00	0.0 / 0.0	43.65			106.91
		103.3	150.56	10/17/00	1.4 / 0.0	43.51			107.05
		109.0	150.56	10/25/00	1.4 / 0.0	43.51			107.05
		103.3	150.56	04/17/01	1.4 / 0.0	41.16			109.40
		109.0	150.60	07/17/01	1.4 / 0.0	40.53			110.07
		103.3	150.60	10/16/01	0.0 / 0.0	45.07			105.53
		103.3	150.60	01/15/02	/	43.90			106.70
		103.3	150.60	04/16/02	0.0 / 0.0	43.35	103.8		107.25
		103.3	150.60	07/24/02	0.0 / 0.0	47.88	104.0		102.72
		103.3	150.60	10/22/02	35.8 / 0.0	51.30	104.0		99.30
		103.3	150.60	01/24/03	0.1 / 0.1	49.35	103.0	0.3	101.25
		103.3	150.60	04/23/03	1.7 / 0.0	45.28	103.91		105.32
		103.3	150.60	07/29/03	0.0 / 0.0	48.36	104.56		102.24
		103.3	150.60	10/21/03	1.7 / 0.0	54.36	103.86		96.24
		103.3	150.60	01/21/03	0.7 / 0.0	56.03	103.80		94.57
		103.3	150.60	04/20/04	1.0 / 1.0	55.18	104.02	_	95.42

Table B-1 Phibrotech, Inc. Groundwater Elevations

	Perforated	Total Depth	MP		Well		Total Depth	Calculated	Groundwater
Well ID	Intervals	Constructed	Elevation	Date	Headspace*	Depth to Water	Measured		Elevation (feet
	(feet bgs)	(feet bgs)	(feet MSL)		(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
		101	155.72	07/24/02	0.6 / 0.0	51.65	99.7	1.3	104.07
		101	155.72	10/22/02	10.2 / 0.0	55.08	99.7	1.3	100.64
		101	155.72	01/24/03	0.1 / 0.1	52.91	99.7	1.3	102.81
		101	155.72	04/23/03	1.1 / 0.1	49.07	102.85		106.65
		101	155.72	07/29/03	0.0 / 0.0	52.35	102.87		103.37
		101	155.72	10/21/03	0.0 / 0.0	58.20	102.75		97.52
		101	155.72	01/21/04	0.0 / 0.0	59.69	102.83		96.03
		101	155.72	04/20/04	0.2 / 0.2	58.88	102.88		96.84
MW-12S	51-72	72.0	152.64	01/13/98	75 / 0.0	39.96			112.68
		72.0	152.64	04/21/98	21 / 0.0	34.83			117.81
		72.0	155.79	07/14/98	0 / 0.0	36.96			118.83
		72.0	155.79	10/19/98	2.9 / 1.4	39.53			116.26
		72.0	155.79	01/19/99	-	42.29			113.50
		72.0	155.79	04/20/99	-	42.29			113.50
		72.0	155.79	07/20/99	7.3 / 1.4	42.55			113.24
		72.0	155.79	10/22/99	31 / 0.0	50.27			105.52
		72.0	155.79	01/25/00	69 / 0.0	53.89			101.90
		72.0	155.79	04/24/00	1.2 / 0.0	47.44			108.35
		72	155.79	10/17/00	0.0 / 0.0	47.27			108.52
		72.0	155.79	10/25/00	0.0 / 0.0	47.27			108.52
		72	155.79	04/17/01	0.0 / 0.0	44.92			110.87
		72.0	155.79	07/17/01	0.0 / 0.0	44.49			111.30
		72	155.79	10/16/01	0.0 / 0.0	48.25			107.54
		72	155.79	01/15/02	/	47.60	74.4		108.19
		72	155.79	04/16/02	1.7 / 0.0	47.19	71.7	0.3	108.60
		72	155.79	07/24/02	42.7 / 0.0	51.59	74.8		104.20
		72	155.79	10/22/02	33.3 / 0.0	55.01	74.8		100.78
		72	155.79	01/24/03	5.8 / 0.1	52.84	74.8		102.95
		72	155.79	04/23/03	1.1 / 0.1	49.00	74.60		106.79
		72	155.79	07/29/03	35.8 / 0.1	52.27	74.75		103.52
		72	155.79	10/21/03	1.8 / 0.1	58.10	74.65		97.69
		72	155.79	01/21/04	1.9 / 0.0	59.53	74.93		96.26
		72	155.79	04/20/04	0.2 / 0.2	58.80	74.83		96.99
MW-13D	78.3-93.3	93.3	151.52	01/13/98	0.0 / 0.0	39.01			112.51
		93.3	151.52	04/21/98	2.0 / 0.1	34.04			117.48
		93.3	151.68	07/14/98	0.8 / 0.0	33.14			118.54
		93.3	151.68	10/19/98	0.0 / 0.0	35.47			116.21
		93.3	151.68	01/19/99	11.2 / 3.0	38.47			113.21
		93.3	151.68	04/20/99	1.1 / 0.0	38.45			113.23
		93.3	151.68	07/20/99	2.4 / 2.4	38.68			113.00
		93.3	151.68	10/22/99	3.0 / 0.0	46.38			105.30
		93.3	151.68	01/25/00	0.0 / 0.0	50.02			101.66
		93.3	151.68	04/24/00	1.2 / 0.0	43.70			107.98
		93.3	151.68	10/17/00	0.0 / 0.0	43.53			108.15
		93.3	151.68	10/25/00	0.0 / 0.0	43.53			108.15
		93.3	151.68	04/17/01	0.0 / 0.0	41.07			1 1 0.61
		93.3	151.68	07/17/01	0.0 / 0.0	40.75			110.93
		93.3	151.68	10/16/01	0.0 / 0.0	45.10			106.58
		93.3	151.68	01/15/02	/	43.78	93.4		107.90
		93.3	151.68	04/16/02	2.1 / 0.0	43.43	93.4		108.25
		93.3	151.68	07/24/02	0.3 / 0.1	47.76	93.8		103.92
		93.3	151.68	10/22/02	29.3 / 0.1	51.18	93.8		100.50
		93.3	151.68	01/24/03	5.8 / 0.1	49.17	93.8		102.51
		93.3	151.68	04/23/03	9.2 / 0.1	45.28	93.61		106.40

Table B-1 Phibrotech, Inc. Groundwater Elevations

		Porfereted	Total Depth	MP		Well		Total Depth	Calculated	Groundwater
	Well ID	Intervals	Constructed	Elevation	Date	Headspace*	Depth to Water	Measured	Casing Fill	
	• • • • • • • • • • • • • • • • • • • •	(feet bgs)	(feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
		(1000)	75	153.89	04/17/01	8.3 / 0.0	43.76			110.13
محمد			75.0	153.89	07/17/01	8.3 / 0.0	43.30			110.59
_			75	153.89	01/15/02	/	46.40	76.1		107.49
			75	153.89	04/16/02	4.6 / 0.0	46.02	74.0	1.0	107.87
			75	153.89	07/24/02	0.0 / 0.0	50.38	76.4		103.51
-			75	153.89	10/22/02	1.0 / 0.0	53.84	76.4		100.05
			75	153.89	01/24/03	2.8 / 0.1	51.88	76.4		102.01
			75	153.89	04/23/03	1.0 / 0.5	47.77	76.17		106.12
			75	153.89	07/29/03	0.8 / 0.0	51.04	76.20		102.85
			75	153.89	10/21/03	1.8 / 0.0	56.88	76.15		97.01
			75	153.89	01/21/04	0.7 / 0.0	58.40	76.32		95.49
			75	153.89	04/20/04	1.0 / 1.4	57.58	76.26	-	96.31
-										
	MW-11	55-75	75.5	152.81	01/13/98	56.5 / 0.0	40.58	74.0	1.5	112.23
			75.5	152.81	04/21/98	3.5 / 0.0	35.45	74.0	1.5	117.36
			75.5	155.76	07/14/98	4.0 / 0.0	37.19	74.1	1.5	118.57
-			75.5	155.76	10/19/98	2.9 / 1.4	39.85	74.1	1.4	115.91
			75.5	155.76	01/19/99	45.5 / 2.7	42.71	74.1	1.5	113.05
			75.5	155.76	04/20/99	79.2 / 1.1	42.62	73.8	1.7	113.14
S.			75.5	155.76	07/20/99	6.4 / 2.4	42.88	73.8	1.7	112.88
			75.5	155.76	10/22/99	3.8 / 0.0	50.71	74.2	1.3	105.05 101.31
			75.5	155.76	01/25/00	0.0 / 0.0	54.45	74.4 74.05	1.1 1.5	107.91
			75.5	155.76	04/24/00	2.0 / 0.0	47.85	74.05 74.1	1.5	108.06
سند			75.5	155.76	10/17/00	2.1 / 0.0	47.70 47.70	74.1 74.1	1.5	108.06
_			75.5	155.76	10/25/00	2.1 / 0.0	47.70 45.29	74.1 74.1	1.4	110.47
			75.5	155.76 155.76	04/17/01	1.4 / 0.5 1.4 / 0.5	44.90	73.8	1.7	110.47
			75.5	155.76	07/17/01 10/16/01	0.0 / 0.0	49.34	77.0		106.42
			75.5 75.5	155.76 155.76	01/15/02	0.0 / 0.0	48.00	76.8		107.76
			75.5 75.5	155.76	04/16/02	0.0 / 0.0	47.56	73.9	1.6	108.20
			75.5 75.5	155.76	07/24/02	3.2 / 0.0	52.00	75.1	0.4	103.76
			75.5	155.76	10/22/02	3.4 / 0.1	55.44	75.1	0.4	100.32
-			75.5 75.5	155.76	01/24/03	22.8 / 0.1	53.28	75.1	0.4	102.48
			75.5	155.76	04/23/03	1.7 / 0.0	49.35	76.93		106.41
			75.5 75.5	155.76	07/29/03	5.6 / 0.0	52.68	77.08		103.08
			75.5	155.76	10/21/03	1.9 / 0.0	58.53	76.90		97.23
_			75.5	155.76	01/21/04	0.0 / 0.0	59.97	76.93		95.79
			75.5	155.76	04/20/04	2.6 / 0.2	59.11	76.9		96.65
			, 5.0							
	MW-12D	84.5-100	101.0	152.63	01/13/98	0 / 0.0	39.94			112.69
			101.0	152.63	04/21/98	1.3 / 0.0	34.85			117.78
			101.0	155.72	07/14/98	0.4 / 0.0	36.93	w		118.79
-			101.0	155.72	10/19/98	2.9 / 1.4	39.59			116.13
_			101.0	155.72	01/19/99	-	42.35			113.37
			101.0	155.72	04/20/99	1.0 / 0.0	42.22			113.50
			101.0	155.72	07/20/99	1.7 / 1.4	42.58			113.14
4			101.0	155.72	10/22/99	0.0 / 0.0	50.32			105.40
			101.0	155.72	01/25/00	0.0 / 0.0	53.93			101.79
			101.0	155.72	04/24/00	0.0 / 0.0	47.49			108.23
			101	155.72	10/17/00	0.0 / 0.0	47.34			108.38
****			101.0	155.72	10/25/00	0.0 / 0.0	47.34			108.38
			101	155.72	04/17/01	0.0 / 0.0	44.95			110.77
			101.0	155.72	07/17/01	0.0 / 0.0	44.95			110.77
Variable			101	155.72	10/16/01	0.0 / 0.0	48.33			107.39
			101	155.72	01/15/02	/	47.67	102.6		108.05
			101	155.72	04/16/02	0.0 / 0.0	47.27	99.6	1.4	108.45

Table B-1 Phibrotech, Inc. Groundwater Elevations

Well ID	Perforated Intervals	Total Depth	MP Elevation	Data	Well Headspace*	Depth to Water	Total Depth Measured	Calculated Casing Fill	Groundwater Elevation (feet
vveirid	(feet bgs)	Constructed (feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
	(1001230)	71.0	150.17	01/25/00	28.0 / 0.0	49.05			101.12
		71.0	150.17	04/24/00	32.0 / 0.0	42.73			107.44
		71	150.17	10/17/00	39.0 / 0.0	42.25			107.92
		71.0	150.17	10/25/00	39.0 / 0.0	42.25			107.92
		71	150.17	04/17/01	35.0 / 0.0	40.23			109.94
		71.0	150.17	07/17/01	35.0 / 0.0	39.70			110.47
		71	150.17	10/16/01	10.0 / 0.0	44.08			106.09
		71	150.17	01/15/02	/	42.92	70.1	0.9	107.25
		71	150.17	04/16/02	0.8 / 0.0	42.42	69.9	1.1	107.75
		71	150.17	07/24/02	0.6 / 0.0	46.73	70.3	0.8	103.44
		71	150.17	10/22/02	4.8 / 0.0	50.20	70.3	0.8	99.97
		71	150.17	01/24/03	1.1 / 0.1	48.28	70.3	0.8	101.89
		71	150.17	04/23/03	1.1 / 0.1	48.28	70.25	0.8	101.89
		71	150.17	07/29/03	5.1 / 0.1	47.38	70.17	0.8	102.79
		71	150.17	10/21/03	1.9 / 0.1	53.17	70.10	0.9	97.00
		71	150.17	01/21/04	2.2 / 0.0	54.75	70.20	0.8	95.42
		71	150.17	04/20/04	1.4 / 0.2	54.10	70.18	8.0	96.07
MW-09	44-77	73.5	152.96	01/13/98	23.4 / 0.0	40.90	75.5		112.06
14144-03	77-77	73.5	152.96	04/21/98	169.0 / 0.1	35.89	73.5	0.0	117.07
		73.5	152.96	07/14/98	27.5 / 0.0	34.70	73.6	0.0	118.26
		73.5	152.96	10/19/98	49.0 / 0.0	37.47	73.5	0.0	115.49
		73.5	152.96	01/19/99	45.9 / 1.0	40.28	73.4	0.1	112.68
		73.5	152.96	04/20/99	86.5 / 0.0	40.19	73.5	0.0	112.77
		73.5	152.96	07/20/99	15.1 / 0.8	40.39	73.5	0.0	112.57
		73.5	152.96	10/22/99	0.0 / 0.0	48.05	73.5	0.0	104.91
		73.5	152.96	01/25/00	29.0 / 0.0	51.81	73.5	0.0	101.15
		73.5	152.96	04/24/00	54.0 / 0.0	45.40	73.7	-0.2	107.56
		73.3 77	152.96	10/17/00	11.0 / 0.0	45.15	73.7	3.3	107.81
		73.5	152.96	10/17/00	11.0 / 0.0	45.15	73.7		107.81
		73.3 77	152.96	04/17/01	9.1 / 0.0	42.81	73.7	3.5	110.15
		73.5	152.96	07/17/01	9.1 / 0.0	42.33	73.3 72.7	0.8	110.63
		77	152.96	10/16/01	7.0 / 0.0	46.75	75.6	1.4	106.21
		77	152.96	01/15/02	0.6 / 0.0	45.57	75.3	1.7	107.39
		77	152.96	04/16/02	2.8 / 0.0	45.07	72.5	4.5	107.89
		77	152.96	07/24/02	6.1 / 0.0	49.45	72.8	4.2	103.51
		77	152.96	10/22/02	12.0 / 0.1	52.86	72.8	4.2	100.10
		77	152.96	01/24/03	4.2 / 0.1	50.94	72.8	4.2	102.02
		77	152.96	04/23/03	4.0 / 0.5	46.83	75.64	1.4	106.13
		77	152.96	07/29/03	32.8 / 0.0	50.07	75.51	1.5	102.89
		77	152.96	10/21/03	21.1 / 0.0	55.90	75.62	1.4	97.06
		77	152.96	01/21/04	5.8 / 0.0	57.56	75.70	1.3	95.40
		77	152.96	04/20/04	2.2 / 0.2	56.72	75.63	1.4	96.24
MW-10	45-75	75.0	153.89	01/13/98	4.8 / 0.0	41.89			112.00
1010 0-10	45-75	75.0 75.0							
		75.0 75.0	153.89	04/21/98	107.0 / 0.1	36.84			117.05
			153.89	07/14/98	66.0 / 0.0	35.65			118.24
		75.0	153.89	10/19/98	43.0 / 0.0	38.26			115.63
		75.0	153.89	01/19/99	23.7 / 3.5	41.09			112.80
		75.0	153.89	04/20/99	71.8 / 0.0	41.08			112.81
		75.0	153.89	07/20/99	29.3 / 1.4	41.24			112.65
		75.0	153.89	10/22/99	16.7 / 0.0	49.01			104.88
		75.0	153.89	01/25/00	2.0 / 0.0	52.76			101.13
		75.0	153.89	04/24/00	8.2 / 0.0	46.41			107.48
		75	153.89	10/17/00	11.0 / 0.0	46.09			107.80
		75.0	153.89	10/25/00	11.0 / 0.0	46.09			107.80

Table B-1 Phibrotech, Inc. Groundwater Elevations

Well iD	Perforated Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth Measured	Calculated Casing Fill	Groundwater Elevation (fee
VVCII ID	(feet bgs)	(feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
		95.5	150.13	01/19/99	41.5 / 5.2	37.35	93.4	2.1	112.78
		95.5	150.13	04/20/99	5.8 / 0.0	37.51	90.3	5.2	112.62
		95.5	150.13	07/20/99	17.0 / 0.4	37.70	93.5	2.0	112.43
		95.5	150.13	10/22/99	0.0 / 0.0	45.03	93.4	2.1	105.10
		95.5	150.13	01/25/00	0.0 / 0.0	48.81	90.7	4.8	101.32
		95.5	150.13	04/24/00	/	42.88	90.5	5.0	107.25
		95.5	150.13	10/17/00	0.0 / 0.0	42.54	90.3	5.3	107.59
		95.5	150.13	10/25/00	0.0 / 0.0	42.54	90.3	5.3	107.59
		95.5	150.13	04/17/01	0.0 / 0.0	40.26	92.5	3.0	109.87
		95.5	150.13	07/17/01	0.0 / 0.0	39.82	90.6	5.0	110.31
		95.5	150.13	10/16/01	0.0 / 0.0	44.04	92.9	2.6	106.09
		95.5	150.13	01/15/02	0.0 / 0.0	43.12	92.3	3.2	107.01
		95.5	150.13	04/16/02	0.0 / 0.0	42.52	90.4	5.1	107.61
		95.5	150.13	07/24/02	0.0 / 0.0	46.65	92.9	2.6	103.48
		95.5	150.13	10/22/02	13.7 / 0.0	50.05	92.9	2.6	100.08
		95.5	150.13	01/24/03	0.1 / 0.1	48.40	92.9	2.6	101.73
		95.5	150.13	04/23/03	0.5 / 0.5	44.52	92.74	2.8	105.61
		95.5	150.13	07/29/03	0.3 / 0.1	47.27	92.57	2.9	102.86
		95.5	150.13	10/21/03	1.9 / 0.1	52.82	90.60	4.9	97.31
		95.5	150.13	01/21/04	0.0 / 0.0	54.63	90.76	4.7	95.50
		95.5	150.13	04/20/04	0.2 / 0.2	54.04	90.67	4.8	96.09
MW-07	45-75	71.6	149.42	01/13/98	56.0 / 1.9	37.95	71.5	0.1	111.47
		71.5	149.42	04/21/98	1.3 / 0.1	33.04	71.5	0.0	116.38
		71.5	149.42	07/14/98	0.0 / 0.0	31.80	71.4	0.0	117.62
		71.5	149.42	10/19/98	2.9 / 1.4	34.36	71.5		115.06
		71.5	149.42	01/19/99	_	37.14	71.6		112.28
		71.5	149.42	04/20/99	3.5 / 0.0	37.31	71.5	0.0	112.11
		71.5	149.42	07/20/99	4.3 / 1.4	37.33	71.5	0.0	112.09
		71.5	149.42	10/22/99	13.2 / 0.0	44.92	71.5	0.0	104.50
		71.5	149.42	01/25/00	7.0 / 0.0	48.75	71.5	0.0	100.67
		71.5	149.42	04/24/00	/	42.58	71.4	0.1	106.84
		75	149.42	10/17/00	0.5 / 0.5	42.18	71.2	3.8	107.24
		71.5	149.42	10/25/00	0.5 / 0.5	42.18	71.2	0.3	107.24
		75	149.42	04/17/01	0.0 / 0.0	39.95	71.2	3.8	109.47
		71.5	149.42	07/17/01	0.0 / 0.0	39.44	71.4	0.1	109.98
		75	149.42	10/16/01	0.0 / 0.0	43.78	71.8	3.3	105.64
		75	149.42	01/15/02	0.7 / 0.0	42.72	71.0	4.0	106.70
		75	149.42	04/16/02	0.0 / 0.0	42.20	71.0	4.0	107.22
		75	149.42	07/24/02	0.8 / 0.0	46.46	71.2	3.8	102.96
		75	149.42	10/22/02	0.1 / 0.1	49.92	71.2	3.8	99.50
		75	149.42	01/24/03	4.7 / 0.1	48.14	71.2	3.8	101.28
		75	149.42	04/23/03	1.7 / 0.1	44.15	71.10	3.9	105.27
		75	149.42	07/29/03	0.8 / 0.0	46.98	71.05	4.0	102.44
		75	149.42	10/21/03	2.9 / 0.0	52.81	70.98	4.0	96.61
		75	149.42	01/21/04	0.0 / 0.0	54.59	71.24	3.8	94.83
		75	149.42	04/20/04	0.2 / 0.2	53.82	71	4.0	95.60
MW-08	41-71	71.0	149.98	01/13/98	227.0 / 0.0	38.02			111.96
	,	71.0	149.98	04/21/98	8748.0 / 0.1	33.03			116.95
		71.0	150.17	07/14/98	20.3 / 0.0	32.05			118.12
		71.0	150.17	10/19/98	142.0 / 0.0	34.61			115.56
		71.0	150.17	01/19/99	252.0 / 2.3	37.40			112.77
		71.0	150.17	04/20/99	37.2 / 0.0	37.50			112.67
		71.0 71.0			38.0 / 0.8	37.63			112.54
		/ 1.0	150.17	07/20/99	30.07 0.0				
		71.0	150.17	10/22/99	20.1 / 0.0	45.29			104.88

Table B-1 Phibrotech, Inc. Groundwater Elevations

Well ID	Perforated Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth Measured	Calculated Casing Fill	Groundwater Elevation (feet
wenin	(feet bgs)	(feet bgs)	(feet MSL)	Dale	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
MW-06A				01/13/98	218.0 / 0.0	DRY			
				04/21/98	134.0 / 0.1	DRY			
				07/14/98	51.0 / 0.0	DRY			
				10/19/98	151.0 / 0.0	DRY			-
				01/19/99	-	DRY			
				04/20/99	117.0 / 0.0	DRY			
				07/20/99	128.6 / 1.4	DRY			
				10/22/99	13.3 / 0.0	DRY			
				01/25/00	183.0 / 0.0	DRY			
				04/24/00	/	DRY			
		30		10/17/00	/	DRY			
				10/25/00	/	DRY			
		30		04/17/01	/	DRY			
				07/17/01	/	DRY			
		30		10/16/01	41.0 / 0.0	DRY			
		30		01/15/02	/	DRY			
		30		04/16/02	0.0 / 0.0	DRY	28.9	1.1	
		30		07/24/02	116.0 / 0.0	DRY	29.2	8.0	
		30		10/22/02	0.1 / 0.1	DRY	29.2	8.0	
		30		01/24/03	0.1 / 0.1	DRY	29.2	8.0	
		30		04/23/03	1.5 / 0.0	DRY	29.08	0.9	
		30		07/29/03	117.0 / 0.0	DRY	29.04	1.0	
		30		10/21/03	44.0 / 0.0	DRY	29.05	0.9	
		30		01/21/04	0.0 / 0.0	DRY	29.01	1.0	
		30		04/20/04	3.1 / 0.2	DRY	29.03	1.0	
MW-06B	45-75	77.6	149.53	01/13/98	0.9 / 0.0	37.47	77.1	0.5	112.06
		77.6	149.53	04/21/98	0.1 / 0.1	32.77	77.0	0.6	116.76
		77.6	149.53	07/14/98	0.0 / 0.0	31.58	77.1	0.5	117.95
		77.6	149.53	10/19/98	2.9 / 1.4	34.70	77.1	0.5	114.83
		77.6	149.53	01/19/99	-	36.79	77.0	0.6	112.74
		77.6	149.53	04/20/99	1.1 / 0.0	36.97	76.9	0.7	112.56
		77.6	149.53	07/20/99	1.4 / 1.4	37.10	76.9	0.7	112.43
		77.6	149.53	10/22/99	0.0 / 0.0	44.49	77.0	0.6	105.04
		77.6	149.53	01/25/00	39.0 / 0.0	48.27	77.3	0.3	101.26
		77.6	149.53	04/24/00	/	42.32	76.9	0.7	107.21
		77	149.53	10/17/00	0.5 / 0.5	41.98	76.6	0.4	107.55
		77.6	149.53	10/25/00	0.5 / 0.5	41.98	76.6	1.0	107.55
		77	149.53	04/17/01	0.0 / 0.0	39.72	77.5		109.81
		77.6	149.53	07/17/01	0.0 / 0.0	39.24	76.5	1.1	110.29
		77 77	149.53	10/16/01	0.0 / 0.0	43.47	76.6	0.4	106.06
		77 77	149.53	01/15/02	0.2 / 0.0	42.52	76.3	0.7	107.01
		77 77	149.53	04/16/02	0.0 / 0.0	41.95	76.2	8.0	107.58
		77 77	149.53	07/24/02	0.0 / 0.0	46.09	76.4	0.6	103.44
		77	149.53	10/22/02	0.1 / 0.1	49.50	76.4	0.6	100.03
		77 77	149.53	01/24/03	0.1 / 0.1	47.83	76.4	0.6	101.70
		77 77	149.53	04/23/03	0.0 / 0.0	43.98	76.05	1.0	105.55
		77 77	149.53	07/29/03	0.2 / 0.0	46.75	75.88	1.1	102.78
		77 77	149.53	10/21/03	1.0 / 0.0	52.29	75.93	1.1	97.24
1		77 77	149.53	01/21/04	0.0 / 0.0	54.05	76.00	1.0	95.48
		77	149.53	04/20/04	0.2 / 0.2	53.45	75.86	1.1	96.08
MW-06D	79-94	95.5	150.16	01/13/98	4.9 / 0.0	38.04	93.9	1.6	112.12
		95.5	150.16	04/21/98	3.9 / 0.1	33.36	93.5	2.0	116.80
		95.5	150.13	07/14/98	0.0 / 0.0	32.16	93.9	1.6	117.97
		95.5	150.13	10/19/98	837.0 / 0.0	34.61	93.9	1.6	115.52

Table B-1 Phibrotech, Inc. Groundwater Elevations

		5							<u> </u>	
-	Well ID		Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth	Calculated	Groundwater Elevation (feet
	vveirib	Intervals (feet bgs)	(feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	Measured (feet bgs)	(feet)	MSL)
		(leet bys)			40/07/00		20.05			112.51
مشد			107.0 107.0	152.46 152.46	10/07/96 01/13/97	0.4 0.4 1.7 1.0	39.95 38.26	106.9 106.9	0.1 0.1	114.20
_			107.0	152.46	04/15/97	0.4 0.4	35.39	106.9	0.1	117.07
			107.0	152.46	07/08/97		35.39	100.9	0.1	117.16
				152.46	10/14/97	0.0 0.0	38.85	107.6		117.16
-			107.0			0.0 / 0.0	40.66	108.4		111.80
			107.0	152.46	01/13/98 04/21/98	0.0 / 0.0	35.63	106.4	 0.4	116.83
			107.0	152.46				105.7		
			107.0	152.46	07/14/98	0.0 / 0.0	34.42		1.3	118.04
			107.0	152.46	10/19/98	0.0 / 0.0	37.03	106.8	0.2	115.43
			107.0	152.46	01/19/99	36.1 / 4.1	39.83	106.7	0.3	112.63
			107.0	152.46	04/20/99	0.0 / 0.0	39.88	106.6	0.4	112.58
			107.0	152.46	07/20/99	1.7 / 1.4	40.00	106.6	0.4	112.46
			107.0	152.46	10/22/99	0.0 / 0.0	47.82	106.6	0.4	104.64
			107.0	152.46	01/25/00	0.0 / 0.0	51.64	107.0	0.0	100.82
			107.0	152.46	04/24/00	0.0 / 0.0	45.16	106.7	0.3	107.30
lane :			107.0	152.46	10/25/00	1.1 / 0.0	44.98	106.7	0.3	107.48
_			107	152.46	04/17/01	2.0 / 0.5	42.13	107.0	0.0	110.33
			107.0	152.46	07/17/01	2.0 / 0.5	42.08	105.7	1.3	110.38
			107	152.46	10/16/01	0.0 / 0.0	46.55	108.8		105.91
:			107	152.46	01/15/02	2.5 / 0.0	45.35	108.2	4.5	107.11
_			107	152.46	04/16/02	5.4 / 0.0	44.84	105.5	1.5	107.62
			107	152.46	07/24/02	0.0 / 0.0	49.27	106.8	0.2	103.19
			107	152.46	10/22/02	3.4 / 0.1	52.72	106.8	0.2	99.74
			107	152.46	01/24/03	5.8 / 0.1	50.78	106.8	0.2	101.68
			107	152.46	04/23/03	1.1 / 0.0	46.76	108.65		105.70
			107	152.46	07/29/03	8.2 / 0.1	49.89	108.54		102.57
			107	152.46	10/21/03	1.9 / 0.1	55.81	108.56		96.65
نفنه			107	152.46	01/21/04	0.0 / 0.0	57.49	108.62		94.97
			107	152.46	04/20/04	1.0 / 1.0	56.59	108.6		95.87
	MW-05	45-75	75.0	153.26	01/13/98	0.9 / 0.0	42.33			110.93
			75.0	153.26	04/21/98	4435.0 / 0.1	37.32			115.94
			75.0	153.26	07/14/98	0.0 / 0.0	35.90			117.36
			75.0	153.26	10/19/98	220.0 / 0.0	38.46			114.80
			75.0	153.26	01/19/99	54.6 / 6.0	41.39			111.87
			75.0	153.26	04/20/99	1.1 / 0.0	41.56			111.70
			75.0	153.26	07/20/99	1.7 / 1.4	41.31	-		111.95
			75.0	153.26	10/22/99	0.0 / 0.0	49.31			103.95
-			75.0	153.26	01/25/00	0.0 / 0.0	53.32			99.94
_			75.0	153.26	04/24/00	0.0 / 0.0	46.85			106.41
			75	153.26	10/17/00	1.0 / 0.0	46.50			106.76
			75.0	153.26	10/25/00	1.0 / 0.0	46.50			106.76
-			75	153.26	04/17/01	0.0 / 0.0	44.18			109.08
			75.0	153.26	07/17/01	0.0 / 0.0	43.50			109.76
			75	153.26	10/16/01	0.0 / 0.0	48.05			105.21
			75	153.26	01/15/02	/ -	46.93	73.0	2.0	106.33
-			75	153.26	04/16/02	0.1 / 0.1	46.34	70.0	5.0	106.92
			75	153.26	07/24/02	0.1 / 0.1	50.77	73.3	1.7	102.49
			75	153.26	10/22/02	0.1 / 0.1	54.38	73.3	1.7	98.88
· January			75	153.26	01/24/03	0.1 / 0.1	52.42	73.3	1.7	100.84
_			75	153.26	04/23/03	0.5 / 0.1	48.31	73.16	1.8	104.95
			75	153.26	07/29/03	0.0 / 0.0	51.37	73.20	1.8	101.89
			75	153.26	10/21/03	1.9 / 0.0	57.46	73.16	1.8	95.80
-			75	153.26	01/21/04	0.0 / 0.0	59.23	73.30	1.7	94.03
_			75	153.26	04/20/04	1.0 / 1.0	58.30	73.2	1.8	94.96

Table B-1 Phibrotech, Inc. Groundwater Elevations

Well ID	Perforated Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth Measured	Calculated Casing Fill	Groundwater Elevation (feet
vveniD	(feet bgs)	(feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
	(10011030)	67.5	152.37	10/14/97	20.0 / 0.0	38.91	70.3		113.46
		67.5	152.37	01/13/98	48.0 / 0.0	40.71	70.2	·	111.66
		67.5	152.37	04/21/98	261.0 / 0.1	35.68	67.7		116.69
		67.5	152.37	07/14/98	0.9 / 0.0	34.42	67.8		117.95
		67.5	152.37	10/19/98	8.0 / 0.0	37.06	67.6		115.31
		67.5	152.37	01/19/99	79.5 / 2.0	39.96	67.7		112.41
		67.5	152.37	04/20/99	17.5 / 0.0	39.94	67.8		112.43
		67.5	152.37	07/20/99	16.8 / 1.4	40.04	67.3	0.2	112.33
		67.5	152.37	10/22/99	0.0 / 0.0	47.88	67.8		104.49
		67.5	152.37	01/25/00	1.0 / 0.0	51.71	67.5	0.0	100.66
		67.5	152.37	04/24/00	14.2 / 0.0	45.36	68.0		107.01
		67.5	152.37	10/25/00	27.0 / 0.0	44.95	67.0	0.5	107.42
		67.5	152.37	04/17/01	20.1 / 0.0	42.61	67.0	0.5	109.76
		67.5	152.37	07/17/01	20.1 / 0.0	42.09	67.3	0.2	110.28
		67.5	152.37	10/16/01	0.0 / 0.0	46.68	70.4		105.69
		67.5	152.37	01/15/02	2.3 / 0.0	45.35	70.3		107.02
		67.5	152.37	04/16/02	16.4 / 0.0	44.88	67.6		107.49
		67.5	152.37	07/24/02	0.8 / 0.0	49.27	70.5		103.10
		67.5	152.37	10/22/02	3.8 / 0.1	52.75	70.5		99.62
		67.5	152.37	01/24/03	0.1 / 0.1	50.81	70.5		101.56
		67.5	152.37	04/23/03	1.1 / 0.0	46.77	70.33		105.60
		67.5	152.37	07/29/03	6.4 / 0.1	49.77	70.38		102.60
		67.5	152.37	10/21/03	1.0 / 0.0	55.72	70.30		96.65
		67.5	152.37	01/21/04	2.2 / 0.0	57.31	70.14		95.06
		67.5	152.37	04/20/04	1.4 / 1.0	56.54	70.31		95.83
MW-04A	87-107	107.0	152.49	04/25/89	0.0 0.0	54.21	107.7		98.28
		107.0	152.49	07/17/89	0.0 0.0	54.19	107.0	0.0	98.30
		107.0	152.49	10/23/89	0.0 0.0	57.41	107.5		95.08
		107.0	152.49	01/22/90	1.2 0.0	56.55	108.3		95.94
		107.0	152.49	04/09/90	8.0 0.0	54.62	108.7		97.87
		107.0	152.49	07/10/90	3.0 0.0	53.06	108.7		99.43
		107.0	152.46	10/15/90	1.0 0.0	54.05	108.4		98.41
		107.0	152.46	01/07/91	6.0 0.0	54.71	108.5		97.75
		107.0	152.46	04/08/91	0.0 0.0	51.90	106.0	1.0	100.56
		107.0	152.46	07/08/91	0.0	50.89	106.8	0.2	101.57
		107.0	152.46	10/21/91	4.3 0.0	51.46	106.8	0.2	101.00
		107.0	152.46	01/13/92	6.1 0.0	49.70	108.4		102.76
		107.0	152.46	03/30/92	0.0 0.0	46.48	110.0		105.98
		107.0	152.46	07/13/92	0.3 0.0	45.82	111.8		106.64
		107.0	152.46	10/13/92	5.1 0.0	46.78	106.8	0.2	105.68
		107.0	152.46	01/19/93		45.00	104.3	2.7	107.46
		107.0	152.46	04/19/93	0.0 0.0	37.44	108.7		115.02
		107.0	152.46	07/12/93	0.0 0.0	36.88	108.5		115.58
		107.0	152.46	10/12/93	0.5 0.0	36.85	108.6		115.61
		107.0	152.46	01/10/94	0.0 0.5	36.92	108.6		115.54
		107.0	152.46	04/11/94	0.2 0.2	36.15	108.2		116.31
		107.0	152.46	07/18/94	0.0 0.0	35.62	108.5		116.84
		107.0	152.46	10/10/94	0.0 4.5	41.52	108.5		110.94
		107.0	152.46	01/16/95	1.2 3.6	40.50	108.5		111.96
		107.0	152.46	04/17/95	0.0 0.5	34.71	108.6		117.75
		107.0	152.46	07/10/95	0.0 0.0	33.33	108.5		119.13
		107.0	152.46	10/09/95	0.0 0.0	37.05	108.5		115.41
		107.0	152.46	01/29/96	0.0 2.6	39.00	108.8		113.46
		107.0 107.0	152.46	04/15/96	0.0 0.0	35.66	108.8		116.80
			152.46	07/15/96	0.0 0.0	36.17	108.8		116.29

Table B-1 Phibrotech, Inc. Groundwater Elevations

	Well ID	Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth Measured	Calculated	Groundwater Elevation (feet
	VVEHID	(feet bgs)	(feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
		(icer bgs)	74.1	154.75	01/19/99	69.0 / 3.8	42.27	73.4	0.7	112.48
			74.1	154.75	04/20/99	8.1 / 0.0	42.26	73. 4 73.3	0.7	112.49
_			74.1	154.75	07/20/99	7.3 / 1.7	42.44	73.3	0.8	112.31
			74.1	154.75	10/22/99	3.3 / 0.0	50.33	73.3	0.8	104.42
			74.1	154.75	01/25/00	12.0 / 0.0	54.25	73.7	0.4	100.50
			74.1	154.75	04/24/00	24.2 / 0.0	47.55	73.5	0.6	107.20
			75	154.75	10/17/00	21.8 / 0.0	47.29	73.4	1.6	107.46
			74.1	154.75	10/25/00	21.8 / 0.0	47.29	73.4	0.7	107.46
			75	154.75	04/17/01	14.2 / 0.2	44.90	73.4	1.6	109.85
			74.1	154.75	07/17/01	14.2 / 0.2	44.40	73.3	0.8	110.35
			75	154.75	10/16/01	0.0 / 0.0	48.94	76.3		105.81
			75	154.75	01/15/02	0.0 / 0.0	47.61	76.0		107.14
			75	154.75	04/16/02	15.5 / 0.0	47.20	73.1	1.9	107.55
_			75	154.75	07/24/02	6.1 / 0.1	51.67	73.3	1.7	103.08
			75	154.75	10/22/02	19.6 / 0.6	55.20	73.3	1.7	99.55
			75	154.75	01/24/03	3.9 / 0.1	53.09	73.3	1.7	101.66
•			75	154.75	04/23/03	9.7 / 0.0	49.05	76.15		105.70
			75	154.75	07/29/03	6.3 / 0.0	52.31	76.10		102.44
			75	154.75	10/21/03	5.7 / 0.0	58.33	76.16	_	96.42
			75	154.75	01/21/04	22.0 / 0.0	59.87	76.33		94.88
			75	154.75	04/20/04	12.2 / 0.2	58.90	76.15		95.85
	MW-04	45-75	75	149.76	04/25/89	0.0 / 0.0	50.57	NM		99.19
_			75	149.76	07/17/89	2.0 / 0.0	51.57	71.5	3.5	98.19
•			75	149.76	10/23/89	0.0 / 0.0	54.84	67.7	7.3	94.92
			75	149.76	01/22/90	0.0 / 0.0	54.02	67.7	7.3	95.74
			75	149.76	04/09/90	49.0 / 0.0	52.26	68.2	6.8	97.50
=			75	149.76	07/10/90	1.0 / 0.0	50.56	67.7	7.3	99.20
			75	149.90	10/15/90	2.0 / 0.0	51.57	72.4	2.6	98.33
			75	149.90	01/07/91	10.0 / 0.0	52.22	67.5	7.5	97.68
			75	149.90	04/08/91	0.0 / 0.0	49.40	67.0	8.0	100.50
-			75	149.90	07/08/91	0.8 / 0.0	48.43	68.6	6.4	101.47
			75	149.90	10/21/91	4.2 / 0.0	48.99	69.6	5.4	100.91
			75	149.90	01/13/92	1.3 / 0.0	46.57	67.5	7.5	103.33
			75	149.90	03/30/92	0.0 / 0.0	43.96	67.5	7.5	105.94
			75	149.90	07/13/92	19.0 / 0.0	43.40	67.4	7.6	106.50
			75	149.90	10/13/92	11.5 / 0.0	45.98	67.4	7.6	103.92
			75	149.90	01/19/93	2.9 / 0.0	42.77	67.6	7.4	107.13
-			75	149.90	04/19/93	0.0 / 0.0	34.90	67.8	7.2	115.00
_			75	149.90	07/12/93	0.0 / 0.0	34.38	67.5	7.5	115.52
			75	149.90	10/12/93	0.2 / 0.0	34.14	67.6	7.4	115.76
			75	149.90	01/10/94	0.0 / 45.0	34.48	67.6	7.4	115.42
-			75	149.90	04/11/94	0.7 / 4.0	33.70	67.2	7.8	116.20
			75	149.90	07/18/94	0.0 / 0.7	33.14	67.5	7.5	116.76
			75 	149.90	10/10/94	4.2 / ####		67.6	7.4	110.86
			75 	149.90	01/16/95	2.0 / 15.0	38.02	67.5	7.5	111.88
-			75 	149.90	04/17/95	0.0 / 3.6	32.21	67.6	7.4	117.69
			75 75	149.90	07/10/95	0.0 / 0.0	30.85	67.5	7.5	119.05
			75 	149.90	10/09/95	0.0 / 4.4	34.55	67.6	7.4	115.35
			75 	152.37	01/29/96	0.0 / 15.0	39.00	67.5	7.5	113.37
			75	152.37	04/15/96	0.0 / 21.0	35.72	67.3	7.7	116.65
			67.5	152.37	07/15/96	0.0 / 6.0	36.20	67.3	0.2	116.17
			67.5	152.37	10/07/96	0.7 / 4.1	39.99	67.3	0.2	112.38
5			67.5	152.37	01/13/97	3.1 / 11.0	38.30	67.2	0.3	114.07
			67.5	152.37	04/15/97	0.6 / 3.5	35.41	67.2	0.3	116.96
			67.5	152.37	07/08/97	/	35.33	67.1	0.4	117.04

Table B-1 Phibrotech, Inc. Groundwater Elevations

Well ID	Perforated Intervals	Total Depth Constructed	MP Elevation	Date	Well Headspace*	Depth to Water	Total Depth Measured	Calculated Casing Fill	Groundwater Elevation (feet
1101110	(feet bgs)	(feet bgs)	(feet MSL)	Date	(ppm)	(feet below MP)	(feet bgs)	(feet)	MSL)
MW-01D	79.5-94.5	94.8	152.60	01/13/98	0.0 / 0.0	39.31	96.0		113.29
		94.8	152.60	04/21/98	105.0 / 0.0	34.43	95.9		118.17
		94.8	152.60	07/14/98	0.0 / 0.0	33.40	95.9		119.20
		94.8	152.60	10/19/98	0.0 / 0.0	35.95	96.0	· <u></u>	116.65
		94.8	152.60	01/19/99	7.1 / 0.4	38.60	96.0		114.00
		94.8	152.60	04/20/99	1.1 / 0.0	38.59	95.9		114.01
		94.8	152.60	07/20/99	1.2 / 0.0	38.93	95.9		113.67
		94.8	152.60	10/22/99	0.0 / 0.0	46.05	95.7		106.55
		94.8	152.60	01/25/00	2.0 / 0.0	49.84	94.8	0.0	102.76
		94.8	152.60	04/24/00	0.0 / 0.0	43.76	96.3		108.84
		94.8	152.60	10/17/00	0.0 / 0.0	43.61	95.7		108.99
		94.8	152.60	10/25/00	0.0 / 0.0	43.61	95.7		108.99
		94.8	152.60	04/17/01	0.0 / 0.0	41.28	94.8	0.0	111.32
		94.8	152.60	07/17/01	0.0 / 0.0	40.99	94.8	0.0	111.61
		94.8	152.60	10/16/01	0.0 / 0.0	45.21	96.0		107.39
		94.8	152.60	01/15/02	/	43.69	95.7		108.91
		94.8	152.60	04/16/02	0.0 / 0.0	43.57	95.7		109.03
		94.8	152.60	07/24/02	0.3 / 0.0	47.76	96.0		104.84
		94.8	152.60	10/22/02	43.9 / 0.0	51.07	96.0		101.53
		94.8	152.60	01/24/03	0.1 / 0.1	49.09	96.0		103.51
		94.8	152.60	04/23/03	1.0 / 0.1	45.37	95.90		107.23
		94.8	152.60	07/29/03	0.0 / 0.0	48.50	96.00		104.10
		94.8	152.60	10/21/03	1.9 / 0.0	54.15	95.90		98.45
		94.8	152.60	01/21/04	0.0 / 0.0	55.61	95.92		96.99
		94.8	152.60	04/20/04	0.2 / 0.2	54.88	95.92		97.72
MW-01S	47-62.5	62.5	152.63	01/13/98	5.8 / 0.0	39.40	62.6		113.23
		62.5	152.63	04/21/98	109.0 / 0.0	34.47	62.6	0.0	118.16
		62.5	152.63	07/14/98	0.1 / 0.0	33.51	62.5	0.0	119.12
		62.5	152.63	10/19/98	0.0 / 0.0	36.06	62.7		116.57
		62.5	152.63	01/19/99	10.8 / 1.5	38.69	62.6		113.94
		62.5	152.63	04/20/99	1.1 / 0.0	38.62	62.5	0.0	114.01
		62.5	152.63	07/20/99	2.1 / 0.0	39.01	62.4	0.1	113.62
		62.5	152.63	10/22/99	0.0 / 0.0	45.93	62.1	0.4	106.70
		62.5	152.63	01/25/00	1.4 / 0.0	49.90	62.5	0.0	102.73
		62.5	152.63	04/24/00	12.0 / 0.0	43.80	62.5	0.0	108.83
		62.5	152.63	10/17/00	0.0 / 0.0	43.54	62.0	0.5	109.09
		62.5	152.63	10/25/00	0.0 / 0.0	43.54	62.0	0.5	109.09
		62.5	152.63	04/17/01	0.0 / 0.0	41.35	62.5	0.0	111.28
		62.5	152.63	07/17/01	0.0 / 0.0	41.05	61.4	1.2	111.58
		62.5	152.63	10/16/01	0.0 / 0.0	45.20	62.0	0.5	107.43
		62.5	152.63	01/15/02	/	43.59	62.3	0.2	109.04
		62.5	152.63	04/16/02	0.0 / 0.0	43.62	62.1	0.4	109.01
		62.5	152.63	07/24/02	1.1 / 0.0	47.79	62.3	0.2	104.84
		62.5	152.63	10/22/02	53.6 / 0.0	51.08	62.3	0.2	101.55
		62.5	152.63	01/24/03	0.1 / 0.1	49.10	62.3	0.2	103.53
		62.5	152.63	04/23/03	0.1 / 0.1	45.29	62.22	0.3	107.34
		62.5	152.63	07/29/03	0.3 / 0.0	48.48	62.21	0.3	104.15
		62.5	152.63	10/21/03	1.0 / 0.0	54.03	62.24	0.3	98.60
		62.5	152.63	01/21/04	0.7 / 0.0	55.49 54.03	62.34	0.2	97.14
		62.5	152.63	04/20/04	NM / NM	54.93	62.19	0.3	97.70
MW-03	45-75	74.1	151.71	01/13/98	8.7 / 0.0	40.03	73.3	8.0	111.68
		74.1	151.71	04/21/98	3400.0 / 0.1	34.89	73.3	8.0	116.82
		74.1	154.75	07/14/98	13.0 / 0.0	36.73	73.5	0.6	118.02
		74.1	154.75		> 2,000 / 0.0	39.35	73.6	0.5	115.40

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sar Date T		enzene	Toluene	Ethyl- benzene	Xylenes, Total	lsopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane DC
MW-15\$	01/15/92	* **											1 U	1 U			15	1 U	1 U	1 U	1	2	1 U		1 U			
	04/15/92	(0.5 U	1 U	1 U	1 U	1 U	1 U		1 U			0.61				4.1	1 U	1 U	1 U	1 U	1.7	1 U	1 U	1 U			
	07/15/92	(0.5 U	1 U	1 U	1 U							1 U				2.9	1 U	1 U	1 U	1 U	1 U			1.1			
	10/15/92	(0.5 U	1 U	1 U	1 U							1 U	1 U			7.7	1 U	1 U	1 U	1 U	1 U		1 U	1 U			
	01/15/93	C	0.5 U	1 U	1 U	1 U							1 U	1 U			9	1 U	1 U	1 U	1 U	2.1		1 U	1 U			
	04/21/93	C	0.5 U	14	10	22			1 U	1 U	1 U	1 U	7.4	1 U	1 U		4.6	1 U	1 U	1 U	1 U	1 U		1 U	1.2 IB	1 U	1 U	1 U
	07/14/93	C	0.5 U	1.2	1 U	2.4			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.4	1 U	1 U	1 U	1 U	1 U		1 U	11	1 U	1 U	1 U
	10/14/93	C	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/12/94	C	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/13/94	C	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3.1	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/20/94	C	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 Ú		2.1	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/11/94	c	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.1	1 U	1 U		6	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/18/95		1 U	4	64	27			1 U	1 U	1 U	1 U	6.3	1 U	1 U		3.7	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/19/95	2	2.5 U	60	82	130			1 U	1 U	1 U	1 U	2.8	1 U	1 U		2.8	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/12/95	o	0.5 U	2.5	18	12			1 U	1 U	1 U	1 U	2	1 U	1 U		5.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/11/95	0	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.4	1 U	1 U		3.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	02/01/96	0).5 U	1.8	25	22			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3.8	1 U	1 U	1 U	1.9	1.5		1 U	1 U	1 U	1 U	1 U
	04/17/96	0	0.5 U	13	40	45			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.8	1 U	1 U	1 U	2.5	1.4		1 U	1 U	1 U	1 U	1 U
	07/17/96	0	0.5 U	1 U	9.7	5.4			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3.2	1 U	1 U	1 U	2.3	1.1		1 U	1 U	1 U	1 U	1 U
	10/08/96	0).5 U	1 U	2.9	2.6			1 U	1 U	1 U	1 U	1 U	1 U	1 U		5.3	1 U	1 U	1 U	_	2.2		1 U	1 U	1 U	1 U	1 U
	01/15/97		0.5 U	5.5	69	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		5.1	1 U	1 U		3.8				10			
	04/17/97).5 U	9.3	21	8.5			1 U	1 U	1 U	1 U	4.1	1 U	1 U		3.3	1 U		4.7	3.3	2.1		1 U		10	1 U	1 U
	07/10/97).5 U	1 U	8.2	1.3			1 U	1 U	1 U	1 U	3.4	1 U	1 U		4.1	1 U	10	1 U	2	1.3		1 U	1 U	10	10	1 U
	10/16/97).5 U	1 U	17	1.7			1 U	1 U	1 U	1 U							10	10	2.6	2.2		1 U	10	10	1 U	10
	01/15/98).5 U	1 U	12	3.7			1 U	1 U	1 U	1 U	1 U 1.4	1 U 1 U	1 U 1 U		5.2 5	1 U	10	10	2.2	3.9		10	1 U	10	10	1 U
	04/23/98).5 U	1 U	60	7.2			1 U	1 U	1 U							1 U	10	1 U	4.2	2.9		1 U	10	10	1 U	1 U
	07/15/98).5 U	1 U	10 U	2.9 U				10	10	1 U	1 U	1 U	1 U		3.1	1 U	1 U	25	1.4	1.8		1 U	1 U	1 U	1 U	1 U
	10/21/98).5 U	1 U	45	12 U			1 U	4.11	4.11	4.11	4.11	4.11	4.11		3.4 U	4.11	4.11	4.5	_			4.11	4.11			
	01/15/99).5 U	1 U	23 U				10	1 U	1 U	1 U	10	1 U	1 U		3.9	1 U	1 U	4.5	3	3.2		1 U	10	1 U	1 U	1 U
	04/15/99		1 U	1 U	23 U	2.2 U							1.1		4.11		7 U	1 U	1 U	75 U	1.7 U	2.9 U		1 U	1 U			
	07/15/99		1 U	10		2.2 U							1.3 U	1 U	1 U		4.2 U	1 U	1 U	75 U	1.7 U	2.9 U	1 U	1 U	1 U			
	10/15/99		2 U		29 U	23 U							6.1 U	1 U			3.9 U	1 U	1 U	34 U	2.5 U	4.2 U	1 U	10	1 U			
	01/15/00			2 U	12 U	2 U							2 U	2 U			6.7 U	2 U	2 U	110 U	2 U	2.1 U	2 U	2 U	2 U			
			10	10	9.3 U	10							1 U				25 U	5.3 U	10 U	23 U	1 U	2.9 U	13 U	1 U	1 U			
	04/15/00		10	10	1 U	1 U							1.3 U				17 U	2.5 U	6.2 U	78 U	1 U	1.8 U	9.8 U	1 U	1 U			
	10/15/00		10	1 U	17 U	1 U							1.3 U	1 U			6.7 U	1 U	1 U	37 U	3.9 U	6.8 U	2.3 U	1 U	1 U			
	04/15/01		10	1 U	1 U	1 U							1.3 U	1 U			3 U	1 U	1 U	16 U	2.2 U	4.3 U	1 U	1 U	1 U			
	07/19/01		10	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.4	1 U	1 U		5.1	1 U	1 U	11	2.1	4	1 U	1 U	1 U	2 U	2 U	2 U
	10/17/01		10	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.2	1 U	1 Ü		2.8	1 U	1 U	8.2	2	3.5	1 U	1 U	1 U	2 U	2 U	2 U
	01/16/02		10	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.1	1 U	1 U		2.7	1 U	1 U	8.6	1.4	2.9	1 U	1 U	1 U	2 U	2 U	2 U
	04/17/02		1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.1	1 U	1 U		2.9	1 U	1 U	3	2.9	4	1 U	1 U	12	2 U	2 U	2 U
	07/24/02		1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		4.4	1 U	1 U	3	1.3	2.8	1 U	1 U	1 U	2 U	2 U	2 U
	10/23/02		1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.5	1 U	1 U		13	1.3	2.5	2.8	3.6	9.7	1 U	1 U	1 U	2 U	2 U	2 U
	01/08/03	0	0.53	1 U	6	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	22	2.9	6.3	14	0.5 U	1 U	6.9	1 U	5 U	0.5 U	1 U	1 U

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Imber	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chioro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chłoro methane	DCFN
V-15S	04/24/03	0.5	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	3.2	1 U	1 U	12	0.5 U	2	1 U	1 U	5 U	0.5 U	1 U	1 U	5
	07/30/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U	5.1	1 U	1 U	13	4.5	21	1 U	1 U	5 U	0.5 U	1 U	1 U	5
	10/22/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.2	1 U	1 U	1 U	21	2.4	2.7	22	2	11	1 U	1 U	5 U	0.5 U	1 U	1 U	5
	01/22/04	0.61	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.5	1 U	1 U	1 U	85	15	26	79	0.5 U	5.4	10	1 U	5 U	0.5 U	1 U	1 U	5
	04/21/04	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.2	1 U	1 U	1 U	73	8.6	18	40	0.63	4.3	7.6	1 U	5 U	0.5 U	1 U	1 [.] U	5
-16	04/15/92	0.5 U	0.69	1	1.6	1 U			1 U			0.86				52	15	140	120	1 U	0.88	13	2.4	1 U				
	07/15/92	0.5 U	1 U	1 U	1 U							1 U				35	5	59	81	1 U	2.4			3.3				
	10/15/92	0.5 U	1 U	1 U	1 U							1 U	1 U			72	10	130	92	1 U	3.3		1 U	4.6				
	01/15/93	1.2 U	2.4 U	2.4 U	2.4 U							2.5 U	2.5 U			51	11	120	79	2.5 U	2.5 U		2.5 U	2.5 U				
	04/22/93	25 U	55	2300	1200			8.1	1 U	1 U	1 U	1 U	1 U	1 U		42	4.7	28	33	1 U	1 U		1 U	2.31	1 U	1 U	1 U	
	07/14/93	50 U	100 U	3100	2000			100 U	20 U	100 U	20 U	20 U	20 U	20 U		15 J	20 U	21	17 J	20 U	20 U		17 J	20 U	20 U	20 U	20 U	
	10/14/93	5 U	10 U	340	10 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		24	5.8	33	11	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/12/94	10 U	20 U	1000	20 U			20 U	20 U	20 U	1 U	1 U	1 U	1 U		22	6.7	56	15	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	04/13/94	10 U	20 U	820	20 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		37	7.9	71	19	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	07/20/94	25 U	50 U	1300	730			5 U	5 U	5 U	5 U	5 U	5 U	5 U		76	19	140	23	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	10/13/94	0.5 U	1.5	2.4	9.7			10 U	10 U	10 U	10 U	10 U	10 U	10 U		91	29	260	71	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	01/16/95	0.5 U	1 U	1 U	1 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		17	5 U	56	54	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	04/19/95	5 U	16	36	55			10 U	10 U	10 U	10 U	10 U	10 U	10 U		34	10 U	110	65	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	07/13/95	10 U	20 U	540	20 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		67	13	97	99	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	10/11/95	0.5 U	1 U	1.8	1.3			10 U	10 U	10 U	10 U	10 U	10 U	10 U		60	22	230	74	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	02/01/96	0.5 U	1 U	11	9.7			10 U	10 U	10 U	10 U	10 U	10 U	10 U		26	14	130	140	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	04/17/96	0.5 U	9.8	30	33			5 U	5 U	5 U	5 U	5 U	5 U	5 U		36	7.3	120	97	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	07/17/96	0.5 U	1 U	6.6	3.6			25 U	25 U	25 U	25 U	25 U	25 U	25 U		110	25 U	230	100	25 U	25 U		25 U	25 U	25 U	25 U	25 U	
	10/09/96	5 U	49	130	230			10 U	10 U	10 U	10 U	10 U	10 U	10 U		73	10 U	340	98	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	01/15/97	1 U	4.6	23	2 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		32	16	150	82	2 U	2 U		2.4	2 U	2 U	2 U	2 U	
	04/17/97	1 U	2 U	7.2	2.4			2 U	2 U	2 U	2 U	2.4	2 U	2 U		31	6.8	81	110	2 U	2 U		2 U	2 U	2 U	2 U	2 U	
	07/10/97	1.2 U	2.5 U	6.5	2.5 U			2.5 U	2.5 U	2.5 U	2.5 U	3.1	2.5 U	2.5 U		30	7.4	82	150	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
	10/16/97	2.5 U	5 U	8.2	5 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		53	24	260	110	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	01/15/98	0.5 U	1 U	12	3.8			1 U	1 U	1 U	1 U	1.8	1 U	1 U		29	13	92	57	1 U	1 U		2.4	1 U	1 U	1 U	1 U	
	04/23/98	0.5 U	1 U	28	2.7			1 U	1 U	1 U	1 U	1.2	1 U	1 U		29	11	98	44	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/98	0.5 U	1 U	6 U	1.8 U											28 U												
	10/21/98	2.5 UD	5 UD	16 D	5 U			5 UD	5 UD	5 UD	5 UD	5 UD	5 UD	5 UD		58 D	19 D	270 D	100 D	5 UD	5 UD		5.1 D	5 UD	5 UD	5 UD	5 UD	
	01/15/99	1 U	2 U	6.1 U	2 U							2 U				36 U	20 U	180 U	41 U	2 U	2 U		3.4 U	2 U				
	04/15/99																		41 U									
	04/15/99	2 U	2 U	6.1 U	2 U							2 U	2 U	2 U		39 U	20 U	180 U		2 U	2 U	13 U	3.4 U	2 U				
	07/15/99	2 U	2 U	33 U	2 U							22 U	2 U			29 U	13 U	130 U	26 U	2 U	2 U	12 U	3.2 U	2 U				
	10/15/99	2 U	2 U	2 U	10 U							5 U	5 U			42 U	30 U	220 U	26 U	5 U	5 U	4 1 U	8.4 U	5 U				
	01/15/00	1 U	1 U	1 U	1 U							1 U				18 U	14 U	69 U	7.5 U	1 U	1 U	15 U	3.4 U	1 U				
	04/15/00	2 U	2 U	2 U	2 U							2 U				26 U	11 U	97 U	7.4 U	2 U	2 U	7.6 U	2 U	2 U				
	10/15/00	2.5 U	2.5 U	7 U	2.5 U							2.5 U	2.5 U			36 U	10 U	130 U	43 U	2.5 U	2.5 U	14 U	2.6 U	2.5 U				
	04/15/01	2 U	2 U	39	11.6 U							2 U	2 U			36 U	11 U	97 U	75 U	2 U	2 U	8 U	2 U	2 U				
	07/19/01	2.5 U	2.5 U	2.7	2.5 U			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		26	7.3	72	160	2.5 U	2.5 U	7.2	2.5 U	2.5 U	5 U	5 U	5 U	

#Name?

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sample Date Type		Toluene	Ethyl- benzene	Xylenes, Total	lsopropyl- benzene	1,2-DBE	Chloro benzene		1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chioro ethane	Chloro methane	DCFM
MW-14S	04/16/97	0.58	2.9	91	36			1 U	1 U	1 U	1 U	2.2	1 U	1 U		45	8.3	9.6	9	26	21		1 U	1.6	1 U	1 U	1 U	
	07/10/97	0.5 U	1 U	14	1 U			1 U	1 U	1 U	1 U	4.4	1 U	1 U		35	6.7	7.1	4.2	19	17		1 U	1.4	1 U	1 U	1 U	
	10/16/97	0.5 U	1 U	20	1.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		57	17	20	1.2	34	25		1 U	2.3	1 U	1 U	1 U	
	01/15/98	0.5 U	1.1	19	5			1 U	1 U	1 U	1 U	1.2	1 U	1 U		50	11	13	4.7	21	11		1 U	1 U	1 U	1 U	1 U	
	04/23/98	12 U	25 U	1500	150			25 U	25 U	25 U	25 U	25 U	25 U	25 U		38	25 U	25 U	25 U	25 U	25 U		25 U	25 U	25 U	25 U	25 U	
	07/15/98	0.51 U	1 U	18 U	8.4 U											18 U												
	10/21/98	1.2 UD	2.5 UD	120 D	29 U			2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD		62 D	13 D	17 D	6 D	25 D	20 D		2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD	
	01/15/99	1.1 U	2 U	77 U	64 U							2 U				84 U	22 U	30 U	20 U	25 U	18 U		12 U	12 U				
	04/15/99	12 U	12 U	820 U	47 U							12 U	12 U	12 U		84 U	22 U	30 U	20 U	25 U	18 U	12 U	12 U	12 U				
	07/15/99	50 U	50 U	3000 U	50 U							50 U	50 U			74 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U				
	10/15/99	2.1 U	5 U	120 U	10 U							5 U	5 U			180 U	56 U	67 U	22 U	37 U	32 U	12 U	5 U	5 U				
	01/15/00	5 U	5 U	5 U	5 U							5 U				230 U	69 U	81 U	31 U	35 U	29 U	14 U	5 U	5.7 U				
	04/15/00	3.2 U	2 U	110 U	2 U							2 U				60 U	13 U	19 U	96 U	6.1 U	5 U	13 U	2 U	2 U				
	10/15/00	5 U	5 U	230 U	5 U							5 U	5 U			170 U	39 U	49 U	37 U	25 U	25 U	11 U	5 U	5 U				
	04/15/01	2.1 U	2 U	8.6 U	2 U							2 U	2 U			130 U	27 U	36 U	12 U	28 U	23 U	6.7 U	2 U	2 U				
	07/19/01	1 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		35	5.5	7.4	3.5	2.2	2.2	2.1	1 U	1 U	2 U	2 U	2 U	
	10/17/01	2 U	2 U	2.4	2 U			2.3	2 U	2 U	2 U	2.4	2 U	2 U		170	39	56	6.4	22	23	5.2	2 U	2 U	4 U	4 U	4 U	
	01/16/02	50 U	50 U	2700	1100			50 U	50 U	50 U	50 U	50 U	50 U	50 U		91	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	100 U	100 U	100 U	
	04/17/02	2 U	2 U	2 U	3.8			2 U	2 U	2 U	2 U	2 U	2 U	2 U		130	30	41	13	18	18	5.3	2 U	2 U	4 U	4 U	4 U	
	07/25/02	25 U	25 U	860	50 U			25 U	25 U	25 U	25 U	25 U	25 U	25 U		150	39	43	25 U	25 U	25 U	25 U	25 U	25 U	50 U	, 50 U	50 U	
	10/23/02	5 U	5 U	14	10 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	360	71	85	6.9	15	28	9	5 U	5 U	10 U	10 U	10 U	
	12/30/02	1.2 J	10 U	130	110 U		10 U	1.8 J	10 U	10 U	10 U	1.7 J	10 U	10 U		190	35	50	56	7.2 J	13	12	10 U	2.7 J	10 U	10 U	10 U	10 U
	04/24/03	2.6	4 U	240	15.4	6	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	160	37	47	36	6.6	12	10	4 U	20 U	2 U	4 U	4 U	20 U
	07/30/03	1.4	1 U	49	2 U	1.6	1 U	3.1	1 U	1 U	1 U	3.3	1 U	1 U	1 U	200	59	79	19	11	26	8.5	1 U	5 U	0.5 U	1 U	1 U	5 U
	10/23/03	20 U	20 U	80	40 U	1,0	10	20 U	20 U	20 U	20 U	20 U	20 U	20 U	9.6 U	490	90	110	46	50 U	37	20 U	20 U	50 U	50 U	50 U	50 U	50 U
	01/22/04	20 U		4 U	8 U	4 U	4 U	4.5	4 U	4 U	4 U	5.4	4 U	4 U	4 U	480	76	100	36	16	34	13	4 U	20 U	2 U	4 U	4 U	20 U
	04/21/04	2.2	4 U 4 U	4 U	8 U	4 U	4 U	4.3	4 U	4 U	4 U	4.9	4 U	4 U	4.6	570	77	87	26	17	33	13	4 U	20 U	2 U	4 U	4 U	20 U
MW -15D	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	1.3	1 U	1 U						1 U	1 U				1 U	1 U	1 U	1 U	1 U	1 U			1 U				
	04/15/91	0.5 U	1 U	1 U	1 U							1 U	1 U			1.2	1 U	1 U	1 U	1 U	1 U			4.1				
	07/15/91	0.5 U	1 U	1 U	1 U							1 U				1.3	1 U	1 U	1 U	1 U	1 U			1.7				
	10/15/91	0.5 U	1 U	1 U	1 U							7				1.8	1 U	1 U	1 U	1 U	1 U			1 U				
	01/15/92											1 U	1 U			2	1 U	1 U	1 U	1 U	1 U	1 U		1 U				
	04/15/92	0.5 U	1 U	1 U	1 U	1 U			1 U			1.4				1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U				
	07/15/92	0.5 U	1 U	1 U	1 U				. •			1 U				1.9	1 U	1 U	1 U	1 U	1 U			1.5				
	10/15/92	0.5 U	1 U	1 U	1 U							1.3	1 U			2.8	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/93	0.5 U			38							1.6	1 U			2.5	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
			13	18	71			1 U	1 U	1 U	1 U	1.0 1 U	1 U	1 U		2.8	1 U	1 U	1 U	1 U	1 U		1 U	1.6 IB	1 U	1 U	1 U	
	04/21/93	0.5 U	42	29										1 U		4.1	1 U	10	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/14/93	1.1	5.3	2.4	8.5			10	1 U	10	10	10	10							1 U	10		1 U	1 U	1 U	1 U	1 U	
	10/14/93	0.5 U	1 U	1 U	1 U			10	10	10	1 U	10	10	1 U		2.8	10	1 U	1 U		10		1 U	1 U	1 U	1 U	1 U	
	01/12/94	0.88	10	1 U	1 U			1 U	1 U	10	1 U	10	1 U	1 U		1.3	10	1 U	1 U	1 U						10	1 U	
	04/13/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.1	1 U	1 U		1.7	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	10	10	

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane DCFM
V-15D	07/20/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/12/94	0.5 U	1.4	1.1	8.3			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.5	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/18/95	1.1	1 U	15	6.8			1 U	1 U	1 U	1 U	2,3	1 U	1 U		1.5	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/19/95	2.5 U	14	32	50			1 U	1 U	1 U	1 U	2.2	1 U	1 U		1.4	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/12/95	0.5 U	1 U	6.3	5			1 U	1 U	1 U	1 U	2.7	1 U	1 U		2.6	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/11/95	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.8	1 U	1 U		2.3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	02/01/96	0.5 U	1.2	16	14			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/17/96	1 U	10	32	36			1 U	1 U	1 U	1 U	2	1 U	1 U		3.8	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/17/96	0.5 U	1 U	6.8	3.6			1 U	1 U	1 U	1 U	3	1 U	1 U		3.7	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/09/96	0.5 U	1 U	5.4	5.5			1 U	1 U	1 U	1 U	1 U	1 U	1 U		5	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/15/97	0.5 U	7.2	35	1 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		4.1	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U _	1 U	1 U
	04/17/97	0.5 U	1 U	5	1.6			1 U	1 U	1 U	1 U	2	1 U	1 U		3.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/10/97	0.5 U	1 U	6.2	1 U			1 U	1 U	1 U	1 U	2.9	1 U	1 U		3.4	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/16/97	0.5 U	1 U	14	1.4			1 U	1 U	1 U	1 U	1.5	1 U	1 U		3.8	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/15/98	0.5 U	1 U	7.6	2.3			1 U	1 U	1 U	1 U	1.4	1 U	1 U		3.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/23/98	0.5 U	1 U	44	4			1 U	1 U	1 U	1 U	1,9	1 U	1 U		5.1	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/21/98	0.5 U	1 U	26				1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.8	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/15/99	1 U	1 U	12 U	1.6 U							1				25 U	2.3 U	1 U	1 U	1 U	1 U		1 U	1 U			
	04/15/99	1 U	1 U	12 U	1.6 U							13 U	1 U	1 U		25 U	2.3 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	07/15/99	1 U	1 U	34 U	1 U							13 U	1 U			9 U	1.1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	10/15/99	1 U	1 U	6 U	2 U							1.5 U	1 U			5.1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	01/15/00	1 U	1 U	1 U	1 U							5.3 U				9.7 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	04/15/00	1 U	1 U	1 U	1 U							7.4 U				13 U	1.1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	10/15/00	1.8 U	1 U	2.9 U	1 U							4 U	1 U			8.7 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	04/15/01	1 U	1 U	1 1 U	2.1 U							5.4 U	1 U			12 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	07/19/01	1 U	1 U	2.5	1 U			1 U	1 U	1 U	1 U	1.8	1 U	1 U		2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
	10/17/01	2.2	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.4	1 U	1 U		6.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
	01/16/02	1 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	8	1 U	1 ป		6.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
	04/17/02	1.1	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.6	1 U	1 U		6.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
	07/25/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.9	1 U	1 U		3.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
	10/22/02	1.2	1 U	3.8	4.9			1 U	1 U	1 U	1 U	2.4	1 U	1 U		6.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
	01/08/03	1.3	1 U	7.7	2.3	1 U	1 U	1 U	1 U	1 U	1 U	2.4	1 U	1 U	1 U	11	1 U	1	2	0.52	1,1	1 U	1 U	5 U	0.5 U	1 U	1 U 5
	04/23/03	2.3	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2	1 U	1 U	1 U	7.6	1 U	1 U	1.3	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U 5
	07/30/03	1.4	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	4.1	1 U	1 U	1 U	8.1	1 U	1 U	0.77	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U 5
	10/21/03	1.9	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.3	1 U	1 U	1 U	5.3	1 U	1 U	0.6	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U 5
	01/22/04	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.3	1 U	1 U	1 U	3	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U 5
	04/21/04	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	3.6	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U 5
-15S	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			21	1 U	1 U	16	1 U	1 U		1 U	1 U			
	01/15/91	0.5 U	4	1.6	4						1 U	1 U				13	1	1 U	9.6	1 U	1 U			1 U			
	04/15/91	0.5 U	1 U	4100	1 U							1 U	1 U			28	1.5	1 U	12	1 U	1 U			7.1			
	07/15/91	0.5 U	1 U	1 U	1 U							1 U				17	1.3	1 U	1 U	1 U	1 U			2			
	10/15/91	0.5 U	1 U	1 U	1 U							1 U				13	1.1	0.71	1 U	1 U	1 U			1 U			

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

fell : mber	Sample Sam Date Ty		ene	Toluene	Ethyl- benzene	Xylenes, Total	isopropyi- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane
-11	04/15/92	0.5 (U	1.7	130	2.3	1.2			0.58			0.78				70	4.7	8.1	0.8	1 U	1.3	0.77	1 U	1 U			
	07/15/92	0.5 (U	1 U	17	1 U							1 U				160	6.1	19	1 U	1 U	1 U			1 U			
	10/15/92	0.5 (U	1 U	11	1 U							1 U	1 U			160	7.9	18	1 U	1 U	1 U		1 U	5			
	01/15/93	1.2 U	U	2.4 U	110	2.4 U							2 U	2 U			86	4.6	8.5	2 U	2 U	2.1		2 U	2 U			
	04/19/93	0.5 (U	1 U	2	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		59	4.3	8.1	1 U	1 U	1.9		1 U	1.3 BI	1 U	1 U	1 U
	07/12/93	0.5 (U	1.8	2.5	6.4			10 U	10 U	10 U	10 U	10 U	10 U	10 U		230	11	37	10 U	10 U	10 U		10 U	19 IB	10 U	10 U	10 U
	10/13/93	0.5 (U	1 U	2.1	3.1			5 U	5 U	5 U	5 U	5 U	5 U	5 U		150	7.9	27	5 U	5 U	5 U		5 U	5 U	5 U	5 U	5 U
	01/10/94	0.5 (U	1 U	2.5	2.8			5 U	5 U	5 U	5 U	5 U	5 U	5 U		190	12	25	5 U	5 U	5 U		5 U	5 U	5 U	5 U	5 U
	04/12/94	0.5 (U	1 U	1 U	1 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		80	4.9	17	2 U	2 U	2.2		2 U	2 U	2 U	2 U	2 U
	07/18/94	0.5 (U	1 U	1 U	1.6			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		180 o	12	32	2.5 U	2.5 U	4.4		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
	10/11/94	0.5 (U	1 U	4.5	1 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		360	22	56	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U
	01/17/95	10 U	U	660	850	1100			20 U	20 U	20 U	20 U	20 U	20 U	20 U		660	37	130	20 U	20 U	20 U		20 U	20 U	20 U	20 U	20 U
	04/17/95	50 L	U	100 U .	1900	1000			10 U	10 U	10 U	10 U	10 U	10 U	10 U		74	10 U	16	10 U	10 U	10 U		10 U	67 B	10 U	10 U	10 U
	07/11/95	2.5 (U	5 U	160	37			5 U	5 U	5 U	5 U	5 U	5 U	5 U		140	9.2	33	5 U	5 U	6		5 U	5 U	5 U	5 U	5 U
	10/09/95	0.5 (U	1 U	5.8	2.2			10 U	10 U	10 U	10 U	10 U	10 U	10 U		180	13	44	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U
	01/30/96	25 L	U	520	460	1000			50 U	50 U	50 U	50 U	50 U	50 U	50 U		620	60	250	50 U	50 U	50 U		50 U	50 U	50 U	50 U	50 U
	04/16/96	25 (U	160	1100	1400			20 U	20 U	20 U	20 U	20 U	20 U	20 U		240	31	87	71	20 U	20 U		20 U	20 U	20 U	20 U	20 U
	07/15/96	10 U	U	20 U	460	290			10 U	10 U	10 U	10 U	10 U	10 U	10 U		220	17	50	81	10 U	10 U		10 U	10 U	10 U	10 U	10 U
	10/08/96	0.5 (U	1.9	20	8			10 U	10 U	10 U	10 U	10 U	10 U	10 U		250	13	53	33	10 U	10 U		10 U	10 U	10 U	10 U	10 U
	01/14/97	0.5 (U	9.4	84	88			1 U	1 U	1 U	1 U	1 U	1 U	1 U		160	16	27	4.3	1 U	4.4		1 U	1 U	1 U	1 U	1 U
	04/16/97	2.5 (U	5 U	120	8.2			5 U	5 U	5 U	5 U	5 U	5 U	5 U		370	26	73	12	5 U	9.6		5 U	5 U	5 U	5 U	5 U
	07/09/97	2.5 (U	5 U	8.3	5 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		240	18	56	6	5 U	8.3		5 U	5 U	5 U	5 U	5 U
	10/15/97	2.5 (U	5 U	5 U	5 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		350	40	100	5 U	5 U	12		5 U	5 U	5 U	5 U	5 U
	01/14/98	12 l	U	770	1800	2200			25 U	25 U	25 U	25 U	25 U	25 U	25 U		390	28	56	25 U	25 U	25 U		25 U	25 U	25 U	25 U	25 U
	04/22/98	1.2 \	U	63	150	210			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		180	19	34	19	2.5 U	5.2		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
	07/15/98	1.2 U	D :	2.5 UD	41 D	4.8 U			2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD		150 D	12 D	29 D	4.2 D	2.5 UD	5.8 D		2.5 UD	2.5 UD	2.5 UD	2.5 UD	2.5 UD
	10/20/98	5 U		10 UD	10 UD	10 U			10 UD	10 UD	10 UD	10 UD	10 UD	10 UD	10 UD		430 D	33 D	100 D	10 UD	10 UD	16 D		10 UD	10 UD	10 UD	10 UD	10 UD
	01/15/99	25 (260 U	1600 U	1270 U							12 U				690 U	29 U	70 U	28 U	25 U	25 U		25 U	25 U			
	04/15/99	25 l	U	670 U	1600 U	1270 U							25 U	25 U	25 U		480 U	29 U	70 U	28 U	25 U	25 U	25 U	25 U	25 U			
	07/15/99	10 (10 U	85 U	10 U							25 U	17 U			740 U	69 U	250 U	12 U	10 U	30 U	28 U	10 U	10 U			
	10/15/99	10 L		10 U	480 U	52 U							10 U	10 U			650 U	56 U	110 U	110 U	10 U	18 U	21 U	10 U	10 U			
	01/15/00	12 (12 U	12 U	12 U							22 U				820 U	100 U	230 U	22 U	12 U	29 U	50 U	12 U	12 U			
	04/15/00	12 (12 U	55 U	17 U							12 U				1100 U	98 U	220 U	65 U	12 U	30 U	54 U	12 U	12 U			
	10/15/00	50 (50 U	50 U	50 U							69 U	50 U			2900 U	480 U	360 U	220 U	980 U	910 U	50 U	50 U	50 U			
	04/15/01	25 (25 U	48 U	25 U							25 U	25 U			1700 U	140 U	370 U	25 U	25 U	54 U	51 U	25 U	25 U			
	07/17/01	5 (5 U	5 U	5 U			5 U	5.7	5 U	5 U	5 U	5 U	5 U		400	30	67	5 U	5 U	9.9	9	5 U	5 U	10 U	10 U	10 U
	10/18/01	25 (25 U	90	122			25 U	25 U	25 U	25 U	25 U	27	25 U		1500	98	410	25 U	25 U	50	51	25 U	25 U	50 U	50 U	50 U
	01/17/02	25 (31	1900	530			25 U	25 U	25 U	25 U	25 U	25 U	25 U		630	44	120	25 U	25 U	25 U	54	25 U	25 U	50 U	50 U	50 U
	04/18/02	25 t		25 U	300	50 U			25 U	25 U	25 U	25 U	25 U	25 0	25 U		1300	89	360	25 U	25 U	44	66	25 U	25 U	50 U	50 U	50 U
	07/26/02	50 (50 U	50 U	100 U			50 U	25 U	50 U	50 U	50 U	50 U	50 U		1500	110	410	50 U	25 U	50 U	58	50 U	50 U	100 U	100 U	100 U
	10/24/02												10 U		10 U	10 U		59				24	39	10 U	10 U	20 U	20 U	20 U
	12/30/02	10 t		10 U 20 U	390	20 U		20.11	10 U	10 U	10 U	10 U	3.4 J	10 U	20 U	10 0	700 550		140	130 100	10 U	15 J	22	20 U	20 U	20 U	20 U	20 U
	12/30/02	1.4	J	200	31	40 U		20 U	3.5 J	3.2 J	20 U	20 U	3.4 J	20 U	20 0		550	42	110	100	20 U	133	~~	200	200	200	200	200

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results
Volatile Organic Compounds (VOCs) Analytical Summary

Well umber	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyi- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
V-11	07/31/03	5 U	10 U	210	94	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1100	96	370	5.4	5 U	50	44	10 U	50 U	5 U	10 U	10 U	50 L
	10/23/03	20 U	20 U	710	40 U			20 U	20 U	20 U	20 U	20 U	20 U	20 U	9.9 U	380	50 U	56	300	50 U	20 U	46	20 U	50 U	50 U	50 U	50 U	50 l
	01/23/04	1 U	2 U	24	4 U	2 U	2 U	2 U	2 U	2 U	2 U	2.6	2 U	2 U	2 U	190	15	37	22	1 U	4.7	24	2 U	10 U	1 U	2 U	2 U	10 (
	04/21/04	1 U	2 U	3.6	4 U	2 U	2 U	2 U	2 U	2 U	2 U	3.3	2 U	2 U	2 U	250	16	40	24	1 U	6.2	8.2	2 U	10 U	1 U	2 U	2 U	10 (
V-12	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	1 U				1 U	1 U	1 U	1 U	1 U	1 U			1 U				
V-13D	10/15/90	0.511	4.11	411	4.11		4.11					4.11	4.11				4.11	4.11	4.11		4.11		4.11	4.11				
V- 13D	01/15/91	0.5 U 0.5 U	1 U 1 U	1 U 1 U	1 U		1 U				4.11	1 U	1 U			2.6	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 0	10	10	1 U						1 U	1 U				1.5	1 U	1 U	1 U	1 U	1 U			1 U				
V-13S	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			23	1 U	1.5	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						3	1 U				7.8 U	1 U	1.6	1 U	1 U	1 U			1 U				
	07/14/93	0.5 U	4	16	27			1 U	1 U	1 U	1 U	1 U	1 U	1 U		30	3.3	35	19	1 U	1 U		3.9	2.3 IB	1 U	1 U	1 U	
	10/15/93	0.5 U	1 U	13	3			2 U	2 U	2 U	2 U	2 U	2 U	2 U		18	2 U	9.7	71	2 U	2 U		2 U	2 U	2 U	2 U	2 U	
V-14D	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			1.5	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	1 U				1.6	1 U	1 U	1 U	1 U	1 U			1 U				
V-14S	10/15/90	0.5 U	1 U	1750	1 U		411					411	411			400	29	20	40		4.11		4.11	40				
- 140	01/15/91	0.5 U	1 U	2	1 U		1 U				1 U	1 U	1 U			180 108	28 15	20 13	48 38	1 U	1 U 1 U		1 U	40 13				
	04/15/91	0.5 U	1 U	3300	1 U						10	1 U	1 U			84	22	1 U	24	1 U 1 U	1 U			31				
	07/15/91	0.5 U	1 U	31	1 U							1 U				55	7.2	1 U	12	1 U	1 U			26				
	10/15/91	0.5 U	1 U	410	1 U							1 U				81	15	11	19	1 U	1 U			1 U				
	01/15/92											1 U	1 U			59	20	8.9	9.4	1 U	1 U	1 U		1 U				
	04/15/92	0.5 U	1 U	1 U	1 U	1 U			1 U			0.6				56	11	7	5.6	1 U	1.6	0.86	1 U	1				
	07/15/92	0.6	1 U	1 U	1 U							1 U				44	5.8	4.4	1.2	1 U	1.4			2.6				
	10/15/92	0.5 U	1 U	1 U	1 U							1 U	1 U			71	9.4	8.1	3.9	1 U	2.3		1 U	3.5				
	01/15/93	0.5 U	1 U	1 U	1 U							1 U	1 U			56	7.4	5.3	1.8	1 U	5.1		1 U	2.1				
	04/22/93	0.5 U	24	40	55			1 U	1 U	1 U	1 U	1 U	1 U	1 U		18	2.3	1.4	1 U	2.3	3.8		1 U	1 U	1 U	1 U	1 U	
	07/13/93	0.5 U	1.3	1.2	3.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		25	2.8	1.9	1 U	2.1	5.4		1 U	1.7 IB	1 U	1 U	1 U	
	10/14/93	0.5 U	1 U	2.1	3.7			1 U	1 U	1 U	1 U	1 U	1 U	1 U		25	3.3	2.6	1 U	4.4	6.2		1 U	1.4 l	1 U	1 U	1 U	
	01/12/94	0.5 U	1 U	3.2	1.4			1 U	1 U	1 U	1 U	1 U	1 U	1 U		21	3	2.2	1 U	4.3	6.7		1 U	1.2	1 U	1 U	1 U	
	04/13/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		29	3.1	2.7	1 U	11	16		1 U	1.2	1 U	1 U	1 U	
	07/20/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		15	1.8	1 U	1 U	11	8.6		1 U	1 U	1 U	1 U	1 U	
	10/11/94	0.53	1 U	1 U	1 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		58	9.2	8	2 U	12	17		2 U	2 U	2 U	2 U	2 U	
	02/08/95	50 U	100 U	3000	690			1 U	1 U	1 U	1 U	1 U	1 U	1 U		50	6.2	7.8	3.3	10	11		1 U	1 U	1 U	1 U	1 U	
	04/18/95	2.5 U	76	120	190			1 U	1 U	1 U	1 U	1.3	1 U	1 U		20	2.9	2.5	1 U	17	16		1 U	4.2 B	1 U	1 U	1 U	
	07/12/95	0.5 U	2.8	26	12			1 U	1 U	1 U	1 U	1.5	1 U	1 U		22	3	2.6	1 U	14	14		1 U	1.5 l	1 U	1 U	1 U	
	10/11/95	0.5 U	1 U	2.1	2			2 U	2 U	2 U	2 U	2 U	2 U	2 U		35	5.7	4.8	2 U	28	27		2 U	2.4	2 U	2 U	2 U	
	02/01/96	10	4.7	87	58			2 U	2 U	2 U	2 U	2 U	2 U	2 U		42	6.5	8.8	2 U	12	11		2 U	2 U	2 U	2 U	2 U	
	04/17/96	2.5 U	54	120	110			2 U	2 U	2 U	2 U	2 U	2 U	2 U		51	7.7	7.7	6.7	32	27		2 U	3.1	2 U	2 U	2 U	
	07/17/96	0.58	1 U	20	10			2 U	2 U	2 U	2 U	2 U	2 U	2 U		37	5.8	5.3	4.9	26	22		2 U	2 U	2 U	2 U	2 U	
	10/08/96	0.5 U	1 U	13	2.9			2 U	2 U	2 U	2 U	2 U	2 U	2 U		61	9.6	11	3.1	29	20		2 U	2 U	2 U	2 U	2 U	
	01/15/97	2.5 U	5 U	470	5 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		90	20	19	19	42	24		5 U	5 U	5 U	5 U	5 U	

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane DCFM
MW-09	07/15/91	0.5 U	1 U	99	1 U		 				1 U				41	1 U	17	120	1 U	1 U			15			
	10/15/91	0.5 U	1 U	94	1 U						1 U				120	20	51	100	1 U	10			1 U			
	01/15/92										1 U	1 U			45	6	16	79	1 U	1 U	1 U		1 U			
	04/15/92	0.5 U	2800	3600	6190	31		1 U			1 U				52	1 U	31	1 U	1 U	1 U	1 U	1 U	48			
	07/15/92	0.5 U	33000	7900	25000						1 U				1 U	1 U	1 U	1 U	1 U	1 U			1900			
	10/15/92	0.5 U	83000	13000	58000						1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U		1 U	1400			
	01/15/93	50 U	400	3900	5300						100 U	100 U			100 U	100 U	100 U	100 U	100 U	100 U		100 U	100 U			
	04/20/93	50 U	5100	4000	9200		1 U	1 U	1 U	1 U	2.7	26	1 U		110 o	34	110 o	17	1 U	21		2.2	29 B	1 U	1 U	1 U
	07/14/93	16 U	33 U	160	74		33 U	33 U	33 U	33 U	33 U	310	33 U		1100	300	1200	33 U	33 U	170		93	200 B	33 U	33 U	33 U
	10/14/93	2.5 U	5 U	120	45		10 U	10 U	10 U	10 U	10 U	110	10 U		390	120	400	10 U	10 U	65		10 U	41 l	10 U	10 U	10 U
	01/12/94	10 U	48	290	220		10 U	10 U	10 U	10 U	10 U	99	10 U		230	91	330	10 U	10 U	46		10 U	201	10 U	10 U	10 U
	04/13/94	500 U	17000	12000	32000		5 U	5 U	5 U	5 U	5 U	53	5 U		270	71	220	21	5 U	69		5 U	20	5 U	5 U	5 U
	07/20/94	1000 U	56000	15000	40000		10 U	10 U	10 U	10 U	10 U	34	10 U		200	56	150	13	10 U	52		10 U	10 i	10 U	10 U	10 U
	10/13/94	500 U	57000	11000	34000		10 U	10 U	10 U	10 U	10 U	99	10 U		350	130	340	30	10 U	170		10 U	25	10 U	10 U	10 U
	01/16/95	0.5 U	1 U	1 U	1 U		5 U	5 U	5 U	5 U	5 U	5 U	5 U		19	5 U	60	57	5 U	5 U		5 U	5 U	5 U	5 U	5 U
	01/18/95	250 U	8200	9800	20000		10 U	10 U	10 U	10 U	10 U	95	10 U		310	110	350	30	10 U	82		10 U	25 I	10 U	10 U	10 U
	04/19/95	50 U	100 U	650	480		100 U	100 U	100 U	100 U	100 U	200	100 U		670	170	850	100 U	100 U	130		100 U	3000 B	100 U	100 U	100 U
	07/13/95	10 U	69	780	340		50 U	50 U	50 U	50 U	50 U	150	50 U		540	200	410	50 U	50 U	100		50 U	50 U	50 U	50 U	50 U
	10/11/95	25 U	110	670	1900		25 U	25 U	25 U	25 U	25 U	74	25 U		320	120	410	25 U	25 U	250		25 U	47	25 U	25 U	25 U
	02/01/96	50 U	100 U	4300	6100		25 U	25 U	25 U	25 U	25 U	94	25 U		500	130	430	76	25 U	120		25 U	44	25 U	25 U	25 U
	04/17/96	3.3	5.5	24	22		20 U	20 U	20 U	20 U	20 U	160	20 U		580	170	620	23	20 U	83		20 U	23	20 U	20 U	20 U
	07/17/96	4.6	2 U	42	4.3		50 U	50 U	50 U	50 U	50 U	160	50 U		570	150	590	50 U	50 U	94		50 U	50 U	50 U	50 U	50 U
	10/09/96	50 U	100 U	2900	350		20 U	20 U	20 U	20 U	20 U	55	20 U		470	87	400	96	20 U	210		20 U	69	20 U	20 U	20 U
	01/15/97	2.5 U	5 U	5 U	5 U		5 U	5 U	5 U	5 U	6.8	54	5 U		400	120	260	250	5 U	50		5 U	5.6	5 U	5 U	5 U
	04/17/97	5 U	10 U	18	10 U		10 U	10 U	10 U	10 U	18	180	10 U		770	200	740	34	10 U	94		11	18	10 U	15	10 U
	07/10/97	25 U	50 U	2500	860		50 U	50 U	50 U	50 U	50 U	210	50 U		850	240	840	50 U	50 U	110		50 U	50 U	50 U	50 U	50 U
	10/16/97	25 U	150	1900	4800		50 U	50 U	50 U	50 U	50 U	57	50 U		600	160	740	57	50 U	470		50 U	550	50 U	50 U	50 U
	01/15/98	5 U	10 U	690	260		10 U	10 U	10 U	10 U	10 U	37	10 U		270	67	240	200	10 U	99		10 U	20	10 U	10 U	10 U
	04/23/98	5 U	10 U	23	10 U		10 U	10 U	10 U	10 U	15	90	10 U		390	160	460	190	10 U	52		10 U	10 U	10 U	14	10 U
	07/15/98	12 U	25 U	73 U	25 U								40.5		1300 U	070 0	1000 D	00 D		500 D		40.5	020 D	40 UD	46 D	40.110
	10/21/98	7.4 D	12 UD	390 D	12 U		12 UD	12 UD	12 UD	12 UD	26 D	160 D	18 D		1200 D	270 D	1200 D	96 D	12 UD	530 D		12 D	920 D	12 UD	16 D	12 UD
	01/15/99	5 U	5 U	100 U	83 U						12 U		5.11		550 U	68 U	250 U	180 U	5 U	160 U	46.11	5 U	200 U			
	04/15/99	5 U	5 U	5 U	5 U						7 U	16 U	5 U		350 U	68 U	250 U	180 U	5 U	160 U	16 U	5 U	200 U			
	07/15/99	25 U	25 U	25 U	25 U						25 U	25 U			810 U	190 U	780 U	140 U	25 U	440 U	50 U	25 U	1400 U			
	10/15/99	5 U	5 U	5 U	10 U						5 U	5 U			280 U	86 U	160 U	85 U	5 U	92 U	7.4 U	5 U	250 U			
	01/15/00	5 U	5 U	5 U	5 U						5 U				170 U	52 U	170 U	38 U	5 U	150 U	70	5 U	300 U			
	04/15/00	5 U	5 U	5 U	5 U						7 U				370 U	110 U	240 U	57 U	5 U	57 U	15 U	5 U	30 U			
	10/15/00	5 U	5 U	29 U	5 U						5 U	15 U			160 U	37 U	130 U	96 U	5 U	22 U	11 U	5 U	5 U			
	04/15/01	5 U	5 U	5 U	5 U						8.1 U	19 U			200 U	52 U	150 U	130 U	5 U	29 U	21 U	5 U	5.1 U	40.11	40.11	40.11
	07/19/01	5 U	5 U	440	25		5 U	5 U	5 U	5 U	5 U	5 U	5 U		110	26	88	68	5 U	16	11	5 U	6.8	10 U	10 U	10 U
	07/19/01 K	5 U	5 U	390	22		5 U	5 U	5 U	5 U	5 U	9.8	5 U		130	33	110	64	5 U	19	13	5 U	8.2	10 U	10 U	10 U
	10/18/01	5 U	5 U	8.1	5 U		5 U	5 U	5 U	5 U	6.5	8.8	5 U		440	89	260	240	5 U	110	15	5 U	69	10 U	10 U	10 U
	10/18/01 K	5 U	5 U	33	5 U		5 U	5 U	5 U	5 U	5 U	5 U	5 U		340	64	160	250	5 U	65	7.6	5 U	68	10 U	10 U	10 U

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results
Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sam Date Ty	•	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
MW-09	01/17/02		2.5 U	2.5 U	2.5 U	2.5 U			2.5 U	2.5 U	2.5 U	2.5 U	4.4	3.6	2.5 U		200	43	89	140	2.5 U	35	5.3	2.5 U	14	5 U	5 U	5 U	
	01/17/02	<	2.5 U	2.5 U	2.5 U	2.5 U			2.5 U	2.5 U	2.5 U	2.5 U	4.2	3.8	2.5 U		200	44	91	150	2.5 U	36	5.3	2.5 U	15	5 U	5 U	5 U	
	04/18/02		2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	2,5 U	4.2	12	2.5 U		140	33	110	64	2.5 U	26	11	2.5 U	6.9	5 U	5 U	5 U	
	04/18/02	<	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	2.5 U	6	20	2.5 U		190	48	160	56	2.5 U	36	16	2.5 U	10	5 U	5 U	5 U	
	07/26/02		25 U	25 U	25 U	50 U			25 U	25 U	25 U	25 U	25 U	25 U	25 U		480	89	320	340	25 U	150	25 U	25 U	280	50 U	50 U	50 U	
	07/26/02	<	10 U	10 U	10 U	20 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		570	130	360	380	10 U	170	13	10 U	320	20 U	20 U	20 U	
	10/24/02		10 U	10 U	10 U	20 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		530	140	530	190	10 U	300	23	10 U	230	20 U	20 U	20 U	
	10/24/02	<	10 U	10 U	10 U	20 U			10 U	10 U	10 U	10 U	12	10 U	10 U		640	160	630	210	10 U	360	28	10 U	270	20 U	20 U	20 U	
	01/09/03		2.5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	9.6	5 U	5 U	5 U	390	100	290	100	2.5 U	150	12	5 U	160	2.5 U	5 U	5 U	25 L
	01/09/03	<	2.5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	9	5 U	5 U	5 U	390	100	290	110	2.5 U	150	11	5 U	170	2.5 U	5 U	5 U	25 L
	04/25/03		2.5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	6	5.6	5 U	5 U	240	55	180	180	2.5 U	80	12	5 U	25 U	2.5 U	5 U	5 U	25 U
	04/25/03	<	2.5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5.5	5.8	5 U	5 U	250	58	200	170	2.5 U	86	13	5 U	25 U	2.5 U	5 U	5 U	25 L
	07/31/03		5 U	10 U	10 U	20 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	480	120	370	330	5 U	160	20	10 U	84	5 U	10 U	10 U	50 U
	07/31/03	<	2.5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	9	7.2	5 U	5 U	460	120	390	310	2.5 U	170	22	5 U	81	2.5 U	5 U	5 U	25 U
	10/22/03		5 U	10 U	10 U	20 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	150	38	130	140	5 U	74	10 U	10 U	190	5 U	10 U	10 U	50 U
	10/22/03	<	1 U	2 U	2 U	4 U	2 U	2 U	2 U	2 U	2 U	2 U	4.1	2 U	2 U	2 U	130	32	120	140	1 U	66	4.3	2 U	140	1 U	2 U	2 U	10 U
	01/23/04		0.5 U	1 U	1 U	2 U	1 U	1 U	1.6	1 U	1 U	1 U	5.6	1.4	1 U	1 U	95	27	94	26	0.5 U	38	4.9	1 U	14	0.5 U	1 U	1 U	5 U
	01/23/04 H	<	0.5 U	1 U	1 U	2 U	1 U	1 U	1.7	1 U	1 U	1 U	5.9	1.7	1 U	1 U	100	28	99	26	0.5 U	41	5.5	1 U	12	0.5 U	1 U	1 U	5 U
	04/21/04		1 U	2 U	2 U	4 U	2 U	2 U	2.1	2 U	2 U	2 U	5.4	2 U	2 U	2 U	190	62	200	30	1 U	73	7.7	2 U	71	10	2 U	2 U	10 U
	04/21/04	<	1 U	2 U	2 U	4 U	2 U	2 U	2.2	2 U	2 U	2 U	6.8	2 U	2 U	2 U	220	68	190	28	1 U	76	7.8	2 U	70	1 U	2 U	2 U	10 U
/IW -10	01/15/89		0.5 U	0.5 U	0.54	0.5 U			0.2 U	0.01 U	0.01 U	0.2 U	1.2	0.2 U	0.2 U		32	0.2 U	2.8	3.7	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
	04/15/89		0.7 U	1 U	1 U	7			1 U	1 U	1 U		5	1 U	1 U		23	10	1 U	10	1 U	1 U		10	1 U	1 U	1 U	1 U	
	07/15/89		7 U	10 U	10 U	30			10 U	10 U	10 U	10 U	10 U	10 U	10 U		180	15	12	150	10 U	10 U		10 U	38	10 U	10 U	10 U	
	10/15/89		5 U	10 U	190	10 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		70	10 U	10 U	50	10 U	10 U		10 U	10 U	10 U	10 U	10 U	2.1
	01/15/90								5 U	5 U	5 U	2 U	2 U	2 U	2 U		2 U	8.4	9.9	80	2 U	2 U			20 U 10 U	2 U 1 U	2 U 1 U	2 U	2 U
	04/15/90		2.5 U	2.5 U	200	5 U			2.5 U	2.5 U	2.5 U	1 U	10	10	1 U		93	5.6 50 U	4.9 50 U	90	1 U	1 U 50 U	50 U	50 U	500 U	50 U	50 U	1 U 50 U	1 U 50 U
	07/15/90		125 U	200	6500	1500		4.11	125 U	125 U	125 U	50 U	50 U	50 U	50 U		240 1 U	1 U	1 U	310 1 U	50 U	1 U	30 0	1 U	1 U	30 0	30 0	30 0	30 0
	10/15/90 01/15/91		0.5 U 0.5 U	330 1 U	1330 1 U	980 4		1 U				1 U	1 U 1 U	1 U			1 U	1 U	1 U	220	1 U 1 U	1 U			1 U				
									0.211	0.01.11	0.01.11	0.2 U	0211	0.2 U	0.211		34	0.2 U	3.2	21	0.2 U	0.88		0.2 U	1	0.2 U	0.2 U	0.2 U	0.2 U
/IW- 11	01/15/89		0.5 U	0.5 U	43	1.5					5 U	5 U	5 U	5 U	5 U		39	20	8.8	12	5 U	15		5 U	5 U	5 U	5 U	5 U	0.20
	04/15/89		500 U	7500	2600	11000			5 U	5 U	1 U	1 U	1 U	1 U	1 U		29	2	4	7	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/89		7 U	10 U	10 U	90			1 U 10 U	1 U 10 U	10 U	10 U	10 U	10 U	10 U		35	10 U	10 U	, 70	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	10/15/89		5 U	10 U	200	10 U			5 U	5 U	5 U	2 U	2 U	2 U	2 U		46	2 U	5.5	28	2 U	2 U			20 U	2 U	2 U	2 U	2 U
	01/15/90		0.5.11		272	450						1 U	1 U	1 U	1 U		33	1 U	1 U	23	1 U	1 U			10 U	1 U	1 U	1 U	1 U
	04/15/90		2.5 U	2.6	370	150			2.5 U 25 U	2.5 U 25 U	2.5 U	10 U	10 U	10 U	10 U		65	10 U	10 U	10 U	10 U	10 U	10 U	10 U	100 U	10 U	10 U	10 U	10 U
	07/15/90		25 U	440	1000	760		4.11	23 0	23 0	25 U	100	1 U	1 U	10 0		1 U	1 U	1 U	1 U	10 U	1 U		1 U	1 U		0		,,,,
	10/15/90		0.5 U	15000	3000	10000		1 U				1 U	1 U	10			1 U	1 U	1 U	1 U	1 U	1 U		. 0	1 U				
	01/15/91		0.5 U	15	4	12						10	1 U	1 U			63	1 U	1 U	1 U	1 U	1 U			25				
	04/15/91		0.5 U	8500	1 U	7500								10			61	1 U				1 U			22				
	07/15/91		0.5 U	57	520	22							10				110		1 U	1 U	1 U	10			1 U				
	10/15/91		0.5 U	140	2000	660							1 U	2.4				1 U	1 U	1 U	1 U		111						
	01/15/92												1 U	3.4			85	7.9	8.7	1 U	1 U	1 U	1 U		1 U				

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Weil lumber	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
W-06D	04/24/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.9	1 U	1 U	1 U	8.8	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 (
	07/30/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	4.1	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 !
	10/22/03	0.5 U	1 U	1.6	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.6	1 U	1 U	1 U	7	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 t
	01/22/04	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	12	1 U	1 U	1 U	22	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 L
	04/20/04	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	6.1	1 U	1 U	1 U	16	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 L
W -07	01/15/89	0.5 U	1.4	1.2	3.6			0.2 U	0.01 U	0.01 U	0.2 U	2.1	0.2 U	0.2 U		35	0.2 U	2.9	0.2 U	0.2 U	0.2 U		0.2 U	2.2	0.2 U	0.2 U	0.2 U	0.2 L
	04/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U		2	1 U	1 U		47	1 U	4	1 U	1 U	1 U		2	1 U	1 U	1 U	1 U	
	07/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		25	1 U	15	1 U	1 U	1 U		3	1 U	1 U	1 U	1 U	
	10/15/89	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U		3	1 U	1 U		44	1 U	4	1 U	1 U	1 U		2	1 U	1 U	1 U	1 U	
	01/15/90							2.5 U	2.5 U	2.5 U	1 U	1 U	1 U	1 U		39	1 U	2.4	1 U	1 U	1 U			10 U	1 U	1 U	1 U	1 U
	04/15/90	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	1 U	1 U	1 U	1 U		45	1 U	3.7	1 U	1 U	1 U			10 U	1 U	1 U	1 U	1 U
	07/15/90	1 U	1 U	1 U	2 U			1 U	1 U	1 U	0.4 U	1.1	0.4 U	0.4 U		34	3.5	29	3.4	0.4 U	0.73	2.4	0.4 U	4 U	0.4 U	0.4 U	0.4 U	0.4 U
	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1.4	1 U			19	1.3	9	5	1 U	1 U		3.5	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	1 U				1.8	3	20	1 U	1 U	1 U			1 U				
	04/15/91	0.5 U	1 U	1 U	1 U							1 U	1 U			30	2	29	1 U	1 U	1 U			5.5				
	07/15/91	0.5 U	1 U	1 U	1 U							1 U				53	1 U	30	31	1 U	1 U			18				
	10/15/91	0.5 U	1 U	1 U	1 U							1 U				54	1 U	18	16	1 U	1 U			4				
	01/15/92											1 U	1 U			120	9.9	49	56	1 U	1 U	9		1 U				
	04/15/92	0.5 U	1 U	1 U	1 U	1 U			1 U			1 U				55	5.7	32	73	1 U	0.97	4.4	1 U	1 U				
	07/15/92	0.5 U	1 U	1 U	1 U							1 U				53	2.3	12	17	1 U	1 U			1.4				
	10/15/92	0.5 U	1 U	1 U	1 U							1 U	1 U			98	4.5	22	48	1 U	2.2		1 U	7				
	01/15/93	0.5 U	1 U	1 U	1 U							2 U	2 U			73	4.9	28	67	2 U	2 U		2 U	2 U				
	04/22/93	1.2 U	2.5 U	90	5.6			1.1	1 U	1 U	1 U	1 U	1 U	1 U		23	2.7	9	17	1 U	1 U		1 U	1.3	1 U	1 U	1 U	
	07/13/93	5 U	10 U	210	10 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		43	6.7	23	7.9	1 U	1 U		1 U	1.2 IB	1 U	1 U	1 U	
	10/13/93	0.82	1 U	7.2	1 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		44	5.5	19	4.8	2 U	2 U		2 U	2 U	2 U	2 U	2 U	
	01/11/94	1.4	1 U	33	1 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		53	6.7	39	9.8	2 U	2 U		2 U	2 U	2 U	2 U	2 U	
	04/12/94	2.5 U	5 U	200	5 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		96	15	67	20	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	07/19/94	0.88	1 U	7.7	1.2			5 U	5 U	5 U	5 U _	5 U	5 U	5 U		140	8.5	57	7	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	10/12/94	0.5 U	1 U	5.1	5.5			2 U	2 U	2 U	2 U	2 U	2 U	2 U		98	4.5	28	7.8	2 U	2 U		2 U	2 U	2 U	2 U	2 U	
	01/18/95	0.5 U	7	8.7	10			10 U	10 U	10 U	10 U	10 U	10 U	10 U		170	10 U	43	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	04/18/95	0.5 U	1 U	1.3	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		26	1.5	19	29	1 U	1.1		1 U	3.2 B	1 U	1 U	1 U	
	07/11/95	0.5 U	1 U	2.1	3.4			2 U	2 U	2 U	2 U	2 U	2 U	2 U		53	5.7	55	24	2 U	2 U		2.3	2 U	2 U	2 U	2 U	
	10/10/95	0.74	1 U	3.8	1.4			10 U	10 U	10 U	10 U	10 U	10 U	10 U		98	11	76	22	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	01/31/96	1	4.2	4.9	10			5 U	5 U	5 U	5 U	5 U	5 U	5 U		85	6.8	47	13	5 U	5 U		5 U	5 U	5 U	5 U	5 U	
	04/16/96	0.5 U	1.3	11	14			2 U	2 U	2 U	2 U	2 U	2 U	2 U		37	3.4	24	41	2 U	2 U		2 U	2 U	2 U	2 U	2 U	
	07/16/96	1	1 U	1.6	2.7			10 U	10 U	10 U	10 U	10 U	10 U	10 U		87	10 U	93	35	10 U	10 U		10 U	10 U	10 U	10 U	10 U	
	10/08/96	0.96	1 U	1.4	1.5			5 U	5 U	5 U	5 U	5 U	5 U	5 U		150	9.9	74	32	5 U	5 U		5.1	5 U	5 U	5 U	5 U	
	01/14/97	0.5 U	1 U	1.7	2.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		95	7.5	31	30	1 U	1.2		2.6	1 U	1 U	1 U	1 U	
	04/16/97	0.5 U	1.1	1.2	1 U			1 U	1 U	1 U	1 U	2.6	1 U	1 U		63	8.5	64	65	1 U	1.7		2.6	1 U	1 U	1 U	1 U	
	07/09/97	0.56	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.3	1 U	1 U		54	9.1	61	79	1 U	1 U		1.7	1 U	1 U	1 U	1 U	
	10/15/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.4	1 U	1 U		85	12	57	65	1 U	1.4		3.3	1 U	1 U	1 U	1 U	
	01/14/98	0.5 U	2.2	5.2	6.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		97	10	38	24	1 U	1.6		1 U	1 U	1 U	1 U	1 U	

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
MW-07	04/22/98	0.5 U	1 U	1.6	1.8			1 U	1 U	1 U	1 U	1.2	1 U	1 U		23	3.6	21	18	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		53	5.9	41	32	1 U	1 U		1.8	1 U	1 U	1 U	1 U	
	10/20/98	0.68	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		88	13	70	41	3	1.4		4.3	1 U	1 U	1 U	1 U	
	01/15/99	2 U	3 U	2.5 U	6.8 U							2.5 U				80 U	8.4 U	33 U	9.7 U	2 U	2 U		2.7 U	2 U				
	04/15/99	2 U	3 U	11 U	6.8 U							2 U	2 U	2 U		80 U	8.4 U	33 U	9.7 U	2 U	2 U	22 U	2.7 U	2 U				
	07/15/99	1 U	1 U	1.3 U	1 U							14 U	1 U			65 U	9.4 U	53 U	16 U	1 U	1.4 U	21 U	2.8 U	1 U				
	10/15/99	2 U	2 U	2 U	4 U							2 U	2 U			130 U	18 U	71 U	7 U	2 U	2.7 U	35 U	5.7 U	2 U				
	01/15/00	1 U	1 U	1 U	1 U							9.8 U				47 U	9.1 U	29 U	2.2 U	1 U	1.1 U	13 U	2.3 U	1 U				
	04/15/00	1 U	1 U	1.2 U	1 U							1.4 U				48 U	6.2 U	41 U	5.8 U	1 U	1.1 U	13 U	1.6 U	1 U				
	10/15/00	2.5 U	2.5 U	2.5 U	2.5 U							2.5 U	2.5 U			110 U	13 U	64 U	29 U	2.5 U	2.5 U	27 U	3.8 U	2.5 U				
	04/15/01	1 U	1 U	1 U	1 U							1 U	1 U			78 U	8.9 U	53 U	41 U	1 U	1.2 U	23 U	2.9 U	1 U				
	07/18/01	2.5 U	2.5 U	2.5 U	2.5 U			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		84	13	76	140	2.5 U	2.5 U	21	2.7	2.5 U	5 U	5 U	5 U	
	10/18/0 1	2 U	2 U	2 U	2 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		160	16	78	27	2 U	2.8	36	4.8	2 U	4 U	4 U	4 U	
	01/17/02	1 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.4	1 U	1 U		15	1.2	8.7	15	1 U	1 U	2.1	1 U	1 U	2 U	2 U	2 U	
	04/18/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		38	4.1	34	52	1 U	1 U	7.9	1.1	1 U	2 U	2 U	2 U	
	07/26/02	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		100	11	58	15	2.5 U	2.5 U	24	3.4	2.5 U	5 U	5 U	5 U	
	10/23/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	3.8	1 U	1 U	10 U	21	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
		0.057 J	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1	1 U	1 U		13	1.8	13	1.8	1 U	0.29 J	3	0.38 J	0.6 J	0.12 J	10	1 U	0.09 J
	04/24/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.7	10	1 U	1 U	59	7.4	48	18	0.5 U	1.8	13	1.1	5 U	0.5 U	1 U	10	5 U
	07/30/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.7	1 U	1 U	1 U	60	8.5	52	20	0.5 U	1.6	16	1.7	5 U	0.5 U	1 U	10	5 U
	10/23/03	2 U	2 U	2 U	4 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U	9.9 U	11	5 U	5.8	3.3	5 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U
	01/22/04	0.5 U	1 U	10	2 U	1 U	10	10	1 U	1 U	10	1.7	10	10	10	32	2.3	24	5.3	0.5 U	1 U	6.2	1 U	5 U	0.5 U	10	10	5 U
NAVA (0.0	04/21/04	0.5 U	10	10	2 U	1 U	1 U	10	10	10	1 U	2.2	10	10	1 U	28	1.4	14	3.4	0.5 U	10	4.4	10	5 U 0.2 U	0.5 U 0.2 U	1 U 0.2 U	1 U 0.2 U	5 U 0.2 U
MW-08	01/15/89 04/15/89	0.5 U	0.5 U	0.5 U	1.6			0.2 U 1 U	0.01 U 1 U	0.01 U	0.2 U 1 U	4.3 1 U	0.2 U 1 U	0.2 U 1 U		69 23	0.2 U	30 36	0.2 U 1 U	0.2 U	0.2 U 1 U		0.2 U 1 U	1 U	1 U	1 U	1 U	0.2 0
	07/15/89	10	1 U	10	10					10			20	10		43	25	85	1 U	1 U	1 U		26	1 U	1 U	1 U	1 U	
	10/15/89	0.7 U	10	1 U 1 U	1 U			10	1 U 1 U	1 U 1 U	1 U	2 1 U	1 U	1 ປ		22	4	40	1 U	1 U	10		8	1 U	10	1 U	1 U	
	01/15/90	0.5 U	1 U	10	1 U			1 U 0.5 U	0.5 U	0.5 U	0.2 U	1.4	0.2 U	0.2 U		28	6.6	29	0.83	10	0.49		0	2 U	0.2 U	0.2 U	0.2 U	0.2 U
	04/15/90	1 U	1 U	1 U	2 U			1 U	1 U	1 U	0.4 U	1.4	0.4 U	0.4 U		17	2.7	28	0.8	0.2 U	0.4 U			4 U	0.4 U	0.4 U	0.4 U	0.4 U
	07/15/90	1 U	1 U	1 U	2 U			1 U	1 U	1 U	0.4 U	0.4 U	0.4 U	0.4 U		20	7.7	42	17	0.4 U 0.4 U	1	5.9	0.92	4 U	0.4 U	0.4 U	0.4 U	0.4 U
	10/15/90	0.5 U	1 U	1 U	1 U		1 U	10			0.70	1 U	1 U	0.40		14	1 U	34	14	1 U	1 U	5.0	1 U	1 U	5., 5			
	01/15/91	0.5 U	3	1.7	4.4						1 U	1 U	, •			26	6	59	30	1 U	1 U			1 U				
MW-09	01/15/89	0.5 U	0.5 U	0.5 U	0.5 U			0.2 U	0.01 U	0.01 U	0.2 U	3.1	2.9	0.2 U		55	0.2 U	34	4.3	0.2 U	8.9		0.2 U	16	0.2 U	0.2 U	0.2 U	0.2 U
	04/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		24	4	5	8	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2	4	1 U		57	14	28	37	1 U	4		3	3	1 U	1 U	1 U	
	10/15/89	0.5 U	1 Ų	1 U	1 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		110	40	90	10 U	10 U	10 U		10 U	15	10 U	10 U	10 U	
	01/15/90							2.5 U	2.5 U	2.5 U	1 U	2.2	1 U	1 U		100	36	50	3.9	1 U	1 U			10 U	1 U	1 U	8.1	1 U
	04/15/90	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	1 U	2	4	1 U		150	48	89	15	1 U	13			10 U	1 U	1 U	1 U	1 U
	07/15/90	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	1 U	1 U	4	1 U		64	12	23	50	1 U	3.7	1 U	1 U	10 U	1 U	1 U	1 U	1 U
	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			17	4.4	6.5	7.8	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	6.6	1.4	9						1 U	1 U				26	7	14	30	1 U	1 U			1 U				
	04/15/91	0.5 U	1 U	1 U	1 U							1 U	1.8			26	3.7	9.4	34	1 U	1.8			2.1				

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	isopropyi- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane DCFN
/IW-06B	10/13/93	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		5.9	1 U	1 U	1 U	1 U	1 U		1 U	1.5 l	1 U	1 U	1 U
	01/11/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.7	1 U	1 U	1 U	1.2	1 U		1 U	1 U	1 U	1 U	1 U
	04/12/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/19/94	0.5 U	1.1	1 U	1.9			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/12/94	0.5 U	1.5	1 U	8.2			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.5	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/17/95	1 U	110	89	110			1 U	1 U	1 U	1 U	4.7	1 U	1 U		8.6	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/18/95	0.5 U	1.6	9.1	6.2			1 U	1 U	1 U	1 U	3.3	1 U	1 U		2.3	1 U	1 U	1 U	1 U	1 U		1 U	3.2 B	1 U	1 U	1 U
	07/11/95	0.5 U	1.1	4	5.1			1 U	1 U	1 U	1 U	1.8	1 U	1 U		8.8	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/10/95	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.6	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/30/96	1 U	28	27	53			1 U	1 U	1 U	1 U	1 U	1 U	1 U		14	1 U	1.6	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/16/96	1 U	4.2	37	50			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/16/96	0.5 U	1 U	2.3	3.5			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/08/96	0.5 U	1 U	2.1	2.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		6.1	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/14/97	0.5 U	4.3	4.3	6.4			1 U	1 U	1 U	1 U	1 U	1 U	1 U		5	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/16/97	0.5 U	3.6	1.7	1 U			1 U	1 U	1 U	1 U	2.3	1 U	1 U		5.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/09/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.9	1 U	1 U		6.6	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/15/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.6	1 U	1 U		6.4	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/14/98	0.5 U	15	32	39			1 U	1 U	1 U	1 U	1.1	1 U	1 U		17	1 U	1.7	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	04/22/98	0.5 U	1.6	4.2	6			1 U	1 U	1 U	1 U	1 U	1 U	1 U		7.7	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	07/15/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	10		4.3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	10/20/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		9.9	1 U	1.1	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
	01/15/99	1 U	19 U	24 U	29 U							1.2				17 U	1.5 U	2.3 U	1 U	1 U	1 U		1 U	1 U			
	04/15/99	1 U	19 U	42 U	33.9 U							1.6 U	1 U	1 U		31 U	1.5 U	2.3 U	1 U	1 U	1 U	1 U	1 U	1 U			
	07/15/99	1 U	1 U	1.2 U	1 U							8.1 U	1 U			8.2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	10/15/99	1 U	1 U	4.8 U	1 U							1.8 U	1 U			12 U	1.6 U	1.5 U	1 U	1 U	1 U	1 U	1 U	1 U			
	01/15/00	1 U	1 U	2 U	1 U							17 U				13 U	2.4 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U			
	04/15/00	1 U	1 U	1.1 U	1 U							1 U				7 U	1.1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	10/15/00	1 U	1 U	1 U	1 U							1.3 U	1 U			9.2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	04/15/01	1 U	10	1 U	1 U							1 U	1 U			5.9 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
	07/18/01	1 U	10	1 U	10			1 U	1 U	1 U	1 U	1 U	10	1 U		3.7	1 U	1 U	10	1 U	1 U	1 U	1 U	10	2 U	2 U	2 U
	10/17/01	1 U	1 U	1 U	10			1 U	1 U	1 U	1 U	1 U	1 U	1 U		4.6	1 U	10	1 U	1 U	1 U	1 U	10	1 U	2 U	2 U	2 U
	01/16/02	10	1 U	1 U	1 U			10	10	10	1 U	10	1 U	10		5.1	10	1 U	1 U	1 U	1 U	1 U	1 U	10	2 U	2 U	2 U
	04/17/02	1 U	1 U	1 U	2 U			10	1 U	10	1 U	1 U	1 U	10		3.1	10	1 U	1 U	1 U	1 U	1 U	1 U	10	2 U	2 U	2 U
	07/25/02	1 U	1 U	1 U	2 U			10	1 U	10	1 U	10	10	1 U		5	1 U	1 U	10	1 U	10	1 U	1 U	10	2 U	2 U	2 U
	10/23/02	1 U	1 U	1 U	2 U	4.11		1 U	1 U	10	1 U	1 U	1 U	1 U		12	1.1	11	1.8	1 U	1 U	3.4	1 U	1 U	2 U	2 U	2 U
	01/09/03	0.5 U	1 U	1 U	2 U	1 U	10	1 U	1 U	1 U	1 U	5.9	1 U	1 U	1 U	22	2	1.5	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U 5
	04/24/03	0.5 U	10	10	2 U	10	1 U	10	10	10	1 U	1.6	10	1 U	10	15	10	10	0.5 U	0.5 U	1 U	1 U	10	5 U	0.5 U	1 U	1 U 5
	07/30/03	0.5 U	10	10	2 U	10	10	1 U	1 U	10	1 U	1.2	10	1 U	10	13	10	1 U	0.5 U	0.5 U	10	1 U	10	5 U	0.5 U	1 U	10 5
	10/22/03	0.5 U	10	10	2 U	10	10	10	1 U	10	1 U	4.4	1 U	10	10	18	10	10	0.5 U	0.5 U	1 U	10	1 U	5 U	0.5 U	1 U	1 U 5
	01/22/04	0.5 U	1 U	1 U	2 U	10	1 U	10	1 U	10	10	3.5	1 U	1 U	1 U	18	7.6	5.9	0.5 U	0.5 U	1 U	10	1 U	5 U	0.5 U	1 U	1 U 5
	04/20/04	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	21	1 U	1 U	1 U	15	2.1	1.8	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U 5
W -06D	10/15/90	0.5 U	1 U	1 U	1 U		1 U					14	1 U			100	1 U	1 U	1 U	1 U	1 U		1 U	1 U			

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

	Sample Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Totai	lsopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane DCI
6D 01/15/91		0.5 U	1 U	1 U	1 U						1 U	20				78	1 U	1 U	1 U	1 U	1 U			1 U			
04/15/92		0.5 U	1 U	1 U	1 U	1 U			1 U			1 U				4.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
07/15/92		0.5 U	1 U	1 U	1 U							1 U				1.9	1 U	1 U	1 U	1 U	1 U			1.4			
10/15/92		0.5 U	12	2.9	13							1 U	1 U			5.1	1 U	1 U	1 U	1 U	1 U		1 U	1.4			
01/15/93		0.5 U	1 U	1 U	1 U							1 U	1 U			1.7	1 U	1 U	1 U	1 U	1 U		1 U	1 U			
04/21/93		0.5 U	24	13	32			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.6	1 U	1 U	1 U	1 U	1 U		1 U	1.9 JB	1 U	1 U	1 U
07/13/93		0.5 U	2.2	2	5.2			1 U	1 U	1 U	1 U	1 U	1 U	1 U		4.6	1 U	1 U	1 U	1 U	1 U		1 U	2.8 IB	1 U	1 U	1 U
10/13/93		0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.5	1 U	1 U		9.4	1 U	1 U	1 U	1 U	1 U		1 U	3.61	1 U	1 U	1 U
01/11/94		0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
04/12/94		0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
07/19/94		0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
10/12/94		0.5 U	1.6	1 U	11			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.1	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
01/18/95		0.5 U	18	22	28			1 U	1 U	1 U	1 U	6.5	1 U	1 U		1.8	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
04/18/95		0.5 U	1 U	3.4	2.5			1 U	1 U	1 U	1 U	2.2	1 U	1 U		1.6	1 U	1 U	1 U	1 U	1 U		1 U	3.4 B	1 U	1 U	1 U
07/11/95		0.5 U	1.1	3.4	5.1			1 U	1 U	1 U	1 U	1.9	1 U	1 U		4.3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
10/10/95		0.5 U	1 U	1.3	2.6			1 U	1 U	1 U	1 U	1.2	1 U	1 U		5.2	1 U	1 U	1 U	3.1	1 U		1 U	1 U	1 U	1 U	1 U
01/30/96		0.5 U	9.3	13	26			1 U	1 U	1 U	1 U	1 U	1 U	1 U		6.3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
04/16/96		2.5 U	9.7	67	88			1 U	1 U	1 U	1 U	1 U	1 U	1 U		5.9	1 U	1 U	1.4	1 U	1 U		1 U	1 U	1 U	1 U	1 U
07/16/96		0.5 U	1 U	3.1	4.6			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
10/08/96		0.5 U	1.7	4.3	3.9			1 U	1 U	1 U	1 U	1 U	1 U	1 U		32	1.2	2.6	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
01/14/97		0.5 U	6.4	16	19			1 U	1 U	1 U	1 U	1 U	1 U	1 U		17	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
04/16/97		0.5 U	3.5	3.7	1.3			1 U	1 U	1 U	1 U	3.7	1 U	1 U		14	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
07/09/97		0.5 U	1 U	1.1	1 U			1 U	1 U	1 U	1 U	3.7	1 U	1 U		14	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
10/15/97		0.5 U	1 U	1.1	1 U			1 U	1 U	1 U	1 U	2.1	1 U	1 U		14	1 U	1.1	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
01/14/98		0.5 U	3.9	12	15			1 U	1 U	1 U	1 U	1.5	1 U	1 U		8.7	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
04/22/98		0.5 U	1 U	2.4	4.4			1 U	1 U	1 U	1 U	1.1	1 U	1 U		6.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
07/15/98		0.5 U	1 U	1.2				1 U	1 U	1 U	1 U	1 U	1 U	1 U		8.1	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
10/20/98		0.5 U	1 U	1 U				1 U	1 U	1 U	1 U	1 U	1 U	1 U		5.4	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
01/15/99		1 U	4 U	14 U	11.5 U							1 U				10 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U			
04/15/99		1 U	4 U	14 U	11.5 U							1.2 U	1 U	1 U		10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
07/15/99		1 U	1 U	4.4 U	1 U							16 U	1 U			23 U	1.6 U	2.6 U	1 U	1 U	1 U	1 U	1 U	1 U			
10/15/99		1 U	1 U	2.9 U	2 U							1 U	1 U			8.8 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
01/15/00		1 U	1 U	1.8 U	1 U							16 U				9.2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
04/15/00		1 U	1 U	1 U	1 _\ U							1 U				4.3 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
10/15/00		1 U	1 U	1 U	1 U							1 U	1 U			10 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U			
04/15/01		1 U	1 U	1 U	1 U							1.5 U	1 U			10 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U			
								111	1 U	4.11	1.11			111						1 U					211	211	211
07/18/01		1 U	1 U	1 U	1 U			1 U		1 U	10	1 U	1 U	1 U		3.4	10	1 U	1 U	1 U	1 U	1 U	1 U	10	2 U	2 U	2 U
10/17/01		1 U	1 U	1 U	1 U			1 U	1 U	1 U	10	1.1	1 U	1 U		4.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
01/16/02		1 U	1 U	1 U	1 U			10	10	10	1 U	1.1	1 U	1 U		6.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
04/17/02		1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
07/25/02		1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U
10/23/02 01/08/03		1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		4.5 6.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U 1 U

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Samp Date Typ	_	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
/IW-04	04/21/04 K	3.3	2.5 U	2.5 U	5 U	4.4	2.5 U	3.1	2.5 U	2.5 U	2.5 U	3.9	2.5 U	2.5 U	2.5 U	330	99	180	160	1.2 U	14	110	3	70	1.2 U	2.5 U	2.5 U	12 L
/W-04A	01/15/89	0.5 U	0.5 U	0.5 U	1.3			0.2 U	0.01 U	0.01 U	0.2 U	0.2 U	0.2 U	0.2 U		6.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 (
	04/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		7	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		5	1 U	1 U	1 U	1 U	1 U		1 U	2.7	1 U	1 U	1 U	
	10/15/89	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/15/90							0.5 U	0.5 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U		8	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			2 U	0.2 U	0.2 U	0.2 U	0.2
	04/15/90	0.5 U	0.5 U	0.5 U	1 U			0.5 U	0.5 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U		2.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			2 U	0.2 U	0.2 U	0.2 U	0.2
	07/15/90	0.5 U	0.5 U	0.5 U	1 U			0.5 U	0.5 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U		6.1	0.42	1.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2 U	0.2 U	0.2 U	0.2 U	0.2
	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	1 U			*	1 U	1 U	1 U	1 U	1 U	1 U			1 U				
	04/15/91	0.5 U	1 U	1 U	1 U							1 U	1 U			1.9	1 U	1 U	1 U	1 U	1 U			3.6				
	07/15/91	0.5 U	1 U	1 U	1 U							1 U				4.2	1 U	5	1 U	1 U	1 U			4.3				
	10/15/91	0.5 U	1 U	1 U	1 U							1 U				2.2	1 U	1.3	1 U	1 U	0.23			1 U				
	01/15/92											1 U	1 U			2	1 U	1 U	1 U	1 U	1 U	1 U		1 U				
	04/15/92	0.5 U	1 U	1 U	1 U	1 U			1 U			0.7				1.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U				
	07/15/92	0.5 U	1 U	1 U	1 U							1 U				1.5	1 U	1 U	1 U	1 U	1 U			1.1				
	10/15/92	0.5 U	1 U	1 U	1 U							1 U	1.2			45	12	49	1 U	1 U	4.2		1.4	4.7				
	01/15/93	0.5 U	3	3.5	8.9							1 U	1 U			4.1	1 U	1.9	1 U	1 U	1 U		1 U	1 U				
	04/20/93	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.7	1 U	1.2	1 U	1 U	1 U		1 U	1.7 IB	1 U	1 U	1 U	
	07/13/93	0.5 U	2.7	1.8	4.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		16	3	13	1 U	1 U	1 U		1.2	2.9 IB	1 U	1 U	1 U	
	10/13/93	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.1	1 U	1 U		7.8	1.6	6.5	1 U	1 U	1 U		1 U	21	1 U	1 U	1 U	
	01/11/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		12	3.4	9.6	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	04/13/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		9.2	1.5	4.2	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/19/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		11	2.4	6.8	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/12/94	0.5 U	1 U	1 U	2.1			1 U	1 U	1 U	1 U	1 U	1 U	1 U		13	2.7	7.5	1 U	1 U	1 U		1 U	2.21	1 U	1 U	1 U	
	01/18/95	0.5 U	1.5	2.7	2.9			1 U	1 U	1 U	1 U	1.9	1 U	1 U		30	11	35	1 U	1 U	1.7		1 U	2.4	1 U	1 U	1 U	
	04/18/95	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		10	2.5	13	1 U	1 U	1 U		1 U	3.5 B	1 U	1 U	1 U	
	07/12/95	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.6	1 U	1 U		19	5	20	1 U	1 U	1.3		1 U	1.3 I	1 U	1 U	1 U	
	10/10/95	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.4	1 U	1 U		21	5.9	28	1 U	1 U	1.6		1 U	1.4	1 U	1 U	1 U	
	01/31/96	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.3	1 U	1 U		19	5.6	25	1 U	1 U	1.5		1 U	1.4	1 U	1 U	1 U	
	04/16/96	0.5 U	1 U	2.9	3.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		15	4.7	19	1 U	1 U	1.2		1 U	1 U	1 U	1 U	1 U	
	07/16/96	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		16	3.7	24	1 U	1 U	1.1		1 U	1.2	1 U	1 U	1 U	
	10/09/96	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		19	3.9	26	1 U	1 U	1.7		1 U	1 U	1 U	1 U	1 U	
	01/14/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		20	5.1	23	1 U	1 U	1.1		1 U	1 U	1 U	1 U	1 U	
	04/16/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.1	1 U	1 U		14	3.3	17	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/09/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.7	1 U	1 U		11	2.4	9.8	1.2	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/16/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.6	1 U	1 U		13	3.6	19	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/14/98	0.5 U	1 U	1.8	1.9			1 U	1 U	1 U	1 U	1.8	1 U	1 U		14	2.9	11	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	04/22/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		11	2.3	9.1	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/98	0.5 U	1 U	1 U				1 U	1 U	1 U	1 U	1.2	1 U	1 U		9.2	1.8	5.8	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/20/98	0.5 U	1 U	1 U				1 U	1 U	1 U	1 U	1 U	1 U	1 U		8,8	1.8	9.3	1 U	1 U	1 U		1 U	1 Û	1 U	1 U	1 U	
	01/15/99	1 U	1 U	2.9	1.7 U							1 U				7 U	1 U	2.7	1 U	1 U	1 U		1 U	1 U				

01-Jul-04

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzen		3 1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	
/W-04A	04/15/99	1 U	1 U	2.9	1.7 U							1.5	1 U	1 U		7 U	1 U	2.7	1 U	1 U	1 U	1 U	1 U	1 U				
	07/15/99	1 U	1 U	1 U	1 U							6.3	1 U			5.2 U	1 U	2	1 U	1 U	1 U	1 U	1 U	1 U				
	10/15/99	1 U	1 U	1 U	2 U							2	1 U			4.5 U	1 U	1.4	1 U	1 U	1 U	1 U	1 U	1 U				
	01/15/00	1 U	1 U	1 U	1 U							1.8				4.2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U				
	04/15/00	1 U	1 U	1 U	1 U							2.5				8.6 U	1.7	8	1 U	1 U	1 U	1 U	1 U	1 U				
	10/15/00	1 U	1 U	1 U	1 U							1.6	1 U			7.4 U	1.7	6.8	1 U	1 U	1 U	1 U	1 U	1 U				
	04/15/01	1 U	1 U	1 U	1 U							1.8	1 U			19 U	4.5	20	1 U	1 U	1 U	1.6	1 U	1 U				
	07/18/01	1 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.7	1 U	1 U		44	13	56	1 U	1 U	2.4	4.4	1.1	1 U	2 U	2 U	2 U	
	10/17/01	1 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2	1 U	1 U		22	6.2	25	1 U	1 U	1.1	1.7	1 U	1 U	2 U	2 U	2 U	
	01/16/02	1 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.7	1 U	1 U		3.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	04/17/02	2 U	2 U	2 U	4 U			2 U	2 U	2 U	2 U	3.6	2 U	2 U		71	18	93	2 U	2 U	4.4	7.3	2 U	2 U	4 U	4 U	4 U	
	07/25/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.3	1 U	1 U		7.1	1.8	6.1	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	10/23/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	2.6	1 U	1 U		36	11	33	1 U	1 U	1.3	1.9	1 U	1 U	2 U	2 U	2 U	
	01/09/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.6	1 U	1 U	1 U	42	11	40	0.5 U	0.5 U	1.8	2.8	1 U	5 U	0.5 U	1 U	1 U	5 L
	04/24/03	1.7	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	5.3	2.9	1 U	1 U	110	37	150	0.5 U	0.5 U	7	13	2.2	5 U	0.5 U	1 U	1 U	5 (
	07/30/03	2.2	4 U	4 U	8 U	4 U	4 U	4 U	4 U	4 U	4 U	6.8	4	4 U	4 U	150	47	230	2 U	2 U	9.2	16	4 U	20 U	2 U	4 U	4 U	20 l
	10/21/03	17	4 U	4 U	8 U	4 U	4 U	4 U	4 U	4 U	4 U	5.3	4 U	4 U	4 U	130	26	210	2 U	2 U	8.9	13	4 U	20 U	2 U	4 U	5.3	20 l
	01/22/04	3.3	2 U	2 U	4 U	2 U	2 U	2 U	2 U	2 U	2 U	2.9	2 U	2 U	2 U	63	17	99	1 U	1 U	4	7.7	2 U	10 U	1 U	2 U	2 U	10 U
	04/21/04	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U	1 U	1 U	20	2	16	0.5 U	0.5 U	1 U	1.3	1 U	5 U	0.5 U	1 U	1 U	5 (
1W-05	01/15/89	0.9	0.5 U	0.5 U	0.5 U			0.2 U	0.01 U	0.01 U	0.2 U	0.2 U	0.2 U	0.2 U		5.9	0.2 U	0.2 U	29	5.6	7.4		0.2 U	2.1	0.2 U	0.2 U	0.2 U	0.2
	04/15/89	1 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		65	1 U	1 U	1 U	140	73		1 U	1 U	1 U	1 U	1 U	
	07/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2	1 U	1 U		46	2	4	1 U	97	57		1 U	1 U	1 U	1 U	1 U	
	10/15/89	0.6	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		15	1 U	10	10	39	31		1 U	1 U	1 U	1 U	1 U	
	01/15/90							1 U	1 U	1 U	0.4 U	0.4 U	0.41	0.4 U		16	0.4 U	0.42	2.2	52	42			4 U	0.4 U	0.4 U	0.4 U	0.4 (
	04/15/90	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	1 U	1 U	1 U	1 U		24	4.7	1 U	1 U	120	76			10 U	1 U	1 U	1 U	11
	07/15/90	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	1 U	1.4	1.9	1 U		51	2.1	3.2	1 U	120	41	1 U	1 U	10 U	1 U	1 U	1 U	1 (
	10/15/90	0.5 U	1 U	1 U	1 U		1 U					1 U	1 U			14	1 U	1 U	1 U	70	33		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	1 U				22	1 U	1 U	1 U	140	49			1 U				
1W-06B	01/15/89	0.5 U	0.5 U	0.5 U	0.5 U			0.2 U	0.01 U	0.01 U	0.2 U	7	0.2 U	0.2 U		57	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2
	04/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U		3	1 U	1 U		37	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	6	1 U	1 U		29	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/15/89	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		29	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/15/90							2.5 U	2.5 U	2.5 U	1 U	6.4	1 U	1 U		46	1 U	1 U	1 U	1 U	1 U			10 U	1 U	1 U	1 U	1 (
	04/15/90	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	1 U	5	1 U	1 U		61	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10 U	1 U	1 U	1 U	1 (
	10/15/90	0.5 U	1 U	1 U	1 U		1 U					10	1 U			52	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	13				59	1 U	1 U	1 U	1 U	1 U			1 U				
	04/15/92	0.5 U	1 U	1.1	0.82	1 U			1 U			1.2				19	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U				
	07/15/92	0.5 U	1 U	1 U	1 U	. •						1 U				10	1 U	1 U	1 U	1 U	1 U			1 U				
	10/15/92	0.5 U	1 U	1 U	1 U							1 U	1 U			9.3	1 U	1 U	1 U	1 U	1 U		1 U	1.4				
	01/15/93	0.5 U	1 U	1 U	1 U							1 U	1 U			6.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	04/21/93	0.5 U	64 o					1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.6	1 U	1 U	1 U	1 U	1 U		1 U	1.41	1 U	1 U	1 U	
	J-1/2 1/3J	0.0 0	U-1 U	26	88			, 0	, 0	. 0	10	. 0	. 0	1 0		2.0	, 0	. 5	, 5	10	. 0		, 5		. 5	. •	. 0	

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sam Date Ty		ne To	oluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
/W-03	04/15/01	2 U		2 U	12 U	3.1 U	201120110		Denzono				5.4 U	2 U			150 U	24 U	17 U	6 U	48 U	42 U	2 U	2 U	2 U	Cilionae	ediane	mediane	
	07/17/01	1 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.3	1 U	1 U		41	6	5.1	1 U	29	20	1 U	1 U	1 U	2 U	2 U	2 U	
	10/17/01	5 U		5 U	5 U	5 U			5 U	5 U	5 U	5 U	5.1	5 U	5 U		290	35	35	5 U	39	35	5 U	5 U	5 U	10 U	10 U	10 U	
	01/16/02	2.5 U	2.	.5 U	2.5 U	2.5 U			2.5 U	2.5 U	2.5 U	2.5 U	5.6	2.5 U	2.5 U		220	28	30	2.5 U	33	30	2.5 U	2.5 U	2.5 U	5 U	5 U	5 U	
	04/16/02	5 U		5 U	5 U	10 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		280	35	44	5 U	36	38	5 U	5 U	5 U	10 U	10 U	10 U	
	07/24/02	5 U		5 U	5 U	10 U			5 U	5 U	5 U	5 U	5.5	5 U	5 U		260	36	34	5 U	28	31	5 U	5 U	5 U	10 U	10 U	10 U	
	10/22/02	10 U	1	10 U	63	700			10 U	10 U	10 U	10 U	10 U	10 U	10 U		190	30	17	25	10 U	13	10 U	10 U	10 U	20 U	20 U	20 U	
	01/08/03	1.6		2 U	2 U	2.3	2 U	2 U	2 U	2 U	2 U	2 U	5.6	2 U	2 U	2 U	250	48	32	15	22	27	2 U	2 U	10 U	1 U	2 U	2 U	10 U
	04/23/03	1 U		2 U	2 U	4 U	2 U	2 U	2 U	2 U	2 U	2 U	8.3	2 U	2 U	2 U	190	34	34	3.8	46	47	2 U	2 U	10 U	1 U	2 U	2 U	10 U
	07/29/03	2.5 U		5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	11	5 U	5 U	5 U	280	34	37	6	70	72	5 U	5 U	25 U	2.5 U	5 U	5 U	25 U
	10/21/03	2.5		1 U	1600	209 M2	11	1 U	1 U	1 U	1 U	1 U	4	1 U	1 U	1 U 1	10 M -HA	18	19	9	17	18	12	1 U	5 U	0.5 U	1 U	1 U	5 U
	01/21/04	1.8		1 U	60	2 U	1.4	1 U	1 U	1 U	1 U	1 U	4.1	1 U	1 U	1 U	200	33	34	76	25	24	18	1 U	5 U	0.5 U	1 U	1 U	5 U
	04/20/04	1.2		1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	5.1	1 U	1 U	1 U	180	31	29	40	49	32	9.6	1 U	5 U	0.5 U	1 U	1 U	5 U
/IW-04	01/15/89	0.5 U		10	15	29			0.2 U	0.01 U	0.01 U	0.2 U	1.6	0.68	0.2 U		120	22	36	20	0.2 U	3.7		0.2 U	14	0.2 U	0.2 U	0.2 U	0.2 U
	04/15/89	5 U		23	15	50			5 U	5 U	5 U	5 U	5 U	5 U	5 U		280	55	92	5 U	5 U	12		5 U	94	5 U	5 U	5 U	
	07/15/89	14 U	2	20 U	140	40			20 U	20 U	20 U	20 U	20 U	20 U	20 U		290	50	80	120	20 U	20 U		20 U	170	20 U	20 U	20 U	
	10/15/89	5 U	1	10 U	10 U	10 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		250	60	100	70	10 U	10 U		20	30	10 U	10 U	10 U	
	01/15/90								12 U	12 U	12 U	5 U	5 U	5 U	5 U		220	33	72	100	5 U	5.1			74	5 U	5 U	5 U	5 U
	04/15/90	10 U	1	10 U	10 U	20 U			10 U	10 U	10 U	4 U	4 U	4 U	4 U		280	35	67	140	4 U	6			54	4 U	4 U	4 U	4 U
	07/15/90	50 U	5	50 U	1600	170			5 U	5 U	5 U	20 U	20 U	20 U	20 U		320	43	65	260	20 U	20 U	20 U	20 U	200 U	20 U	20 U	20 U	20 U
	10/15/90	0.5 U		17	230	650		0.21					1 U	1 U			250	54	80	360	1 U	1 U		1 U	38				
	01/15/91	0.5 U		1 U	1 U	1						1 U	1 U				180	1 U	57	190	1 U	1 U			1 U				
	04/15/91	0.5 U		1 U	730	880							1 U	1 U			170	21	40	180	1 U	1 U			43				
	07/15/91	0.5 U	160	000	6700	18000							1 U				190	40	66	95	1 U	12			94				
	10/15/91	0.5 U	6	900	4100	10000							400 U				400 U	400 U	400 U	400 U	400 U	400 U			1 U				
	01/15/92												1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U				
	04/15/92	6.7		7.2	960	1010	1 U			1 U			1 U				280	57	120	49	1 U	15	24	1 U	18				
	07/15/92	0.5 U		1 U	200	1 U							1 U				280	53	74	32	1 U	12			61				
	10/15/92	71		1 U	1300	230							1 U	1 U			230	32	48	18	1 U	1 U		1 U	26				
	01/15/93	130 U	10	000	10000	19000							250 U	250 U			250 U	250 U	250 U	250 U	250 U	250 U		250 U	250 U				
	04/20/93	0.5 U		1 U	88 o	13			1 U	1 U	1 U	1 U	1 U	1 U	1 U		25	3.9	4.2	11	1 U	1 U		1 U	3.8 IB	1 U	1 U	1 U	
	07/13/93	0.6		2	1.8	11			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		100	23	29	9	2.5 U	2.6		3.3	17 B	2.5 U	2.5 U	2.5 U	
	10/13/93	1.3		1 U	1 U	40			10 U	10 U	10 U	10 U	10 U	10 U	10 U		290	55	65	13	10 U	11		10 U	59	10 U	10 U	10 U	
	10/14/93	5 U	•	10 U	320	10 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		21	4.8	24	8	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/11/94	0.81		1 U	8.3	14			5 U	5 U	5 U	5 U	5 U	5 U	5 U		130	43	42	5 U	5 U	5 U		5 U	23	5 U	5 U	5 U	
	04/13/94	0.5 U		1 U	4	6.5			5 U	5 U	5 U	5 U	5 U	5 U	5 U		190	33	42	5 U	5 U	5 U		5 U	19	5 U	5 U	5 U	
	07/19/94	0.58		1 U	1 U	4.2			10 U	10 U	10 U	10 U	10 U	10 U	10 U		340	59	68	10 U	10 U	10 U		10 U	33 I	10 U	10 U	10 U	
	10/11/94	5 U	•	10 U	270	39			10 U	10 U	10 U	10 U	10 U	10 U	10 U		390	78	110	10 U	10 U	21		10 U	97	10 U	10 U	10 U	
	01/18/95	5 U		10 U	350	130			10 U	10 U	10 U	10 U	10 U	10 U	10 U		190	37	51	10 U	10 U	10 U		10 U	21	10 U	10 U	10 U	
	04/18/95	100 U	1	600	1700	2900			10 U	10 U	10 U	10 U	10 U	10 U	10 U		67	15	32	10 U	10 U	10 U		10 U	34 B	10 U	10 U	10 U	
	07/12/95	10 U		270	260	890			5 U	5 U	5 U	5 U	5 U	5 U	5 U		90	17	27	6.3	5 U	5 U		5 U	19	5 U	5 U	5 U	
	10/10/95	2.5 U		5 U	75	21			10 U	10 U	10 U	10 U	10 U	10 U	10 U		150	34	59	10 U	10 U	10 U		10 U	42	10 U	10 U	10 U	

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results
Volatile Organic Compounds (VOCs) Analytical Summary

ell iber	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane
04	01/31/96	50 U	100 U	2100	1400			10 U	10 U	10 U	10 U	10 U	10 U	10 U		160	25	46	14	10 U	10 U		10 U	26	10 U	10 U	10 U
	04/16/96	25 U	680	1300	1400			10 U	10 U	10 U	10 U	10 U	10 U	10 U		130	39	52	15	10 U	10 U		10 U	31	10 U	10 U	10 U
	07/16/96	50 U	100 U	1000	270			10 U	10 U	10 U	10 U	10 U	10 U	10 U		140	32	46	10 U	10 U	10 U		10 U	31	10 U	10 U	10 U
	10/09/96	50 U	380	1100	1900			20 U	20 U	20 U	20 U	20 U	20 U	20 U		310	48	100	20 U	20 U	22		20 U	110	20 U	20 U	20 U
	01/14/97	6.2 U	12 U	1100	12 U			12 U	12 U	12 U	12 U	12 U	12 U	12 U		330	76	130	36	12 U	12 U		12 U	56	12 U	12 U	12 U
	04/16/97	12 U	35	1300	620			25 U	25 U	25 U	25 U	25 U	25 U	25 U		150	32	67	25 U	25 U	25 U		25 U	31	25 U	25 U	25 U
	07/09/97	5 U	10 U	810	110			10 U	10 U	10 U	10 U	10 U	10 U	10 U		150	32	42	10 U	10 U	10 U		10 U	35	10 U	10 U	10 U
	10/16/97	5 U	10 U	460	31			10 U	10 U	10 U	10 U	10 U	10 U	10 U		230	69	140	12	10 U	27		10 U	140	10 U	10 U	10 U
	01/14/98	5 U	10 U	530	420			10 U	10 U	10 U	10 U	10 U	10 U	10 U		180	42	72	61	10 U	10 U		10 U	46	10 U	10 U	10 U
	04/22/98	2.9	5 U	320	5 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		92	25	37	110	5 U	5 U		5 U	17	5 U	5 U	5 U
	07/15/98	12 UD	25 UD	1200 D	300 U			25 UD	25 UD	25 UD	25 UD	25 UD	25 UD	25 UD		120 D	25 UD	28 D	25 UD	25 UD	25 UD		25 UD	28 D	25 UD	25 UD	25 UD
	10/21/98	6.2 UD	12 UD	740 D	240 U			12 UD	12 UD	12 UD	12 UD	12 UD	12 UD	12 UD		120 D	29 D	64 D	22 D	12 UD	12 D		12 UD	52 D	12 UD	12 UD	12 UD
	01/15/99	5 U	10 U	220 U	31 U							10 U				190 U	40 U	64 U	66 U	2.5 U	10 U		2.5 U	36 U			
	04/15/99	3.5 U	2.5 U	220 U	9.9 U							2.5 U	2.5 U	2.5 U		190 U	40 U	64 U	66 U	2.5 U	10 U	68 U	2.5 U	36 U			
	07/15/99	10 U	10 U	670 U	67 U							10 U	10 U			140 U	36 U	58 U	87 U	10 U	10 U	100 U	10 U	38 U			
	10/15/99	5 U	5 U	92 U	11 U							5 U	5 U			210 U	82 U	170 U	85 U	5 U	25 U	160 U	5 U	130 U			
	01/15/00	5.1 U	2.5 U	2.5 U	6 U							8.8 U				160 U	85 U	160 U	18 U	2.5 U	18 U	170 U	4.9 U	100 U			
	04/15/00	5 U	5 U	46 U	8.6 U							5 U				240 U	98 U	170 U	94 U	5 U	13 U	130 U	5 U	53 U			
	10/15/00	50 U	50 U	2500 U	50 U							50 U	50 U			170 U	1 U	7.4 U	99 U	50 U	50 U	130 U	50 U	50 U			
	04/15/01	50 U	120 U	3100 U	830 U							50 U	50 U			150 U	50 U	58 U	50 U	50 U	50 U	100 U	50 U	50 U			
	07/18/01	50 U	50 U	2400	50 U			50 U	50 U	50 U	50 U	50 U	50 U	50 U		74	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	100 U	100 U	100 U
	07/18/01 K	50 U	50 U	2400	50 U			50 U	50 U	50 U	50 U	50 U	50 U	50 U		76	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	100 U	100 U	100 U
	10/18/01	50 U	50 U	3700	50 U			50 U	50 U	50 U	50 U	50 U	50 U	50 U		170	50 U	73	50 U	50 U	50 U	65	50 U	50 U	100 U	100 U	100 U
	10/18/01 K	50 U	50 U	2800	50 U			50 U	50 U	50 U	50 U	50 U	50 U	50 U		220	50 U	90	50 U	50 U	50 U	81	50 U	59	100 U	100 U	100 U
	01/17/02	10 U	10 U	680	10 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		130	31	55	160	10 U	10 U	63	10 U	20	20 U	20 U	20 U
	01/17/02 K	10 U	10 U	720	10 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		140	32	58	160	10 U	10 U	70	10 U	24	20 U	20 U	20 U
	04/18/02	50 U	50 U	2200	170			50 U	50 U	50 U	50 U	50 U	50 U	50 U		260	57	100	50 U	50 U	50 U	86	50 U	58	100 U	100 U	100 U
	04/18/02 K	50 U	50 U	1900	160			50 U	50 U	50 U	50 U	50 U	50 U	50 U		260	65	100	50 U	50 U	50 U	84	50 U	60	100 U	100 U	100 U
	07/25/02	7.7	5 U	220	328			5 U	5 U	5 U	5 U	5 U	5 U	5 U		210	110	180	32	5 U	18	210	5 U	85	10 U	10 U	10 U
	07/25/02 K	7.6	5 U	200	317			5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	210	110	170	32	5 U	18	200	5 U	84	10 U	10 U	10 U
	10/23/02 10/23/02 K	12 U	12 U	820	1650			12 U 12 U	12 U	12 U	12 U 12 U	12 U 12 U	12 U 12 U	12 U	10 U	130 140	76 82	200	31	12 U	20	240	12 U	87	25 U	25 U	25 U
	12/30/02	12 U 3.8	12 U	880	1760		2511		12 U	12 U		1.9 J	2.5 U	12 U 2.5 U	100	85	45	210	28	12 U	21	250	12 U	90	25 U	25 U	25 U
	12/30/02 12/30/02 K	3.8 J	0.37 J 0.4 J	51 49	81 78		2.5 U 5 U	1.5 J 1.6 J	2.5 U 5 U	2.5 U 5 U	2.5 U 5 U	2.1 J	5 U	5 U		99	48	110 120	67 64	2.5 U	8.1	130 E	2.3 J	30	0.39 J	0.47 J	2.5 U
	04/25/03	5.6		540	31	6.4	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	130	83	150	150	5 U	9.7 17	140	2.8 J	36	0.34 J	5 U	5 U
			5 U					5 U			5 U	5 U	5 U	5 U	5 U	140	83			2.5 U		210	5 U	68	2.5 U	5 U	5 U
	04/25/03 K 07/30/03	5.6 5.8	5 U 5 U	500 5 U	28.4 10 U	5.8 5 U	5 U 5 U	5 U	5 U 5 U	5 U	5 U	5 U	5 U	5 U	5 U	140	78	150 160	160 56	2.5 U	18 25	220 230	5 U	75 96	2.5 U	5 U	5 U
	07/30/03 07/30/03 K	5.8 7	10 U	10 U	20 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	150	80	170	59	2.5 U		250	5 U	96	2.5 U	5 U	5 U
	10/23/03	20 U	20 U	410	40 U	10 0	10 0	20 U	20 U	20 U	20 U	20 U	20 U	20 U	10 U	140	65	150	53	5 U 50 U	25 20 U	160	10 U	100	5 U	10 U	10 U
	10/23/03 10/23/03 K	20 U		390				20 U	20 U		20 U	20 U	8 U		10 U	150	73	160	55				20 U	61 58	50 U	50 U	50 U
	01/23/03 K	5.7	8 U		4 U	21	4 U	4 U	4 U	8 U 4 U	4 U	4 U	4 U	8 U	4 U	190	73 74	200	120	20 U	13 16	180	8 U	58	20 U	20 U	20 U
	01/23/04 01/23/04 K	6.3	4 U 2.5 U	200 210	9.6 13	25	2.5 U	3.2	2.5 U	2.5 U	2.5 U	3	2.5 U	4 U 2.5 U	2.5 U	200	74 76	190	140	2 U	16 16	170 150	4 U	73 67	2 U	4 U	4 U
	04/21/04 K	3.3	2.5 U 4 U	210 4 U	13 8 U	4.3	2.5 U 4 U	3.∠ 4 U	2.5 U	2.5 U	2.5 U	3 4 U	2.5 U	2.5 U	2.5 U	330	99	180	140	1.2 U 2 U	14	110	3.4 4 U	67 70	1.2 U 2 U	2.5 U 4 U	2.5 U 4 U

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sam Date Ty		ne To	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
MW-01S	10/07/96	0.5 U		1 U	2.1	2.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		16	1 U	1.6	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/13/97	0.5 U		1 U	1 U	2			1 U	1 U	1 U	1 U	1 U	1 U	1 U		6	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	04/15/97	0.5 U		1 U	1.4	1.2			1 U	1 U	1 U	1 U	5.4	1 U	1 U		15	1 U	1.4	1.1	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/08/97	0.5 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	3.5	1 U	1 U		14	1 U	1.4	1.1	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/14/97	0.5 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		12	1 U	1.5	1 U	1 U	1 U		1 U	1 U	10	1 U	1 U	
	01/13/98	0.5 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		12	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	04/21/98	0.5 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		14	1 U	1.8	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/14/98	0.5 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		14	1 U	1.7	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/19/98	0.5 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		7.8	1 U	10	1.2	1 U	1 U		10	1 U	1 U	1 U	1 U	
	01/15/99	0.5 U		10	2	1 U							1.9				10	1 U	1.2	1.5	1 U	10		1 U	1 U				
	04/15/99	1 U		10	1 U	2 U							1.8	1 U	1 U		7.2	1	10	1.6	1 U	1 U	2.5	1 U	10				
	07/15/99	10		10	10	1 U							16	1 U			9.1	1	1.6	1 U	1 U	10	5.3	1 U	10		,		
	10/15/99	1 U		10	10	2 U							1 U	1 U			9.1	10	1.1	1.5	1 U	10	3.9	10	10				
	01/15/00	10		10	1 U	10							31				9.9	1 U	1.9	1.5 U	1 U	10	2.8	10	10				
	04/15/00	10		10	10	1 U							10				16	1 U 1 U	2.5	1 U	10	1 U	7.6	1 U 1 U	1 U 1 U				
	10/15/00 04/15/01	1 U		10	1 U 1 U	1 U 1 U							1 U 1 U	1 U			8.9 13	1 U	1.3 1.8	1 U 1 U	1 U	1 U 1 U	3.5 8.8	1 U	1 U				
	07/17/01	1 U		1 U 1 U	1 U	1 U			1 U	1 U	1 U	1 U	10	1 U	1 U		10	1 U	1.5	1 U	1 U 1 U	1 U	5.6	1 U	1 U	2 U	2 U	2 U	
	10/16/01	1 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		13	1 U	1.9	1.1	1 U	1 U	6.7	1 U	1 U	2 U	2 U	2 U	
	01/15/02	1 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1.6	1 U	1 U		7	1 U	1 U	1.3	1 U	1 U	1.2	1 U	1 U	2 U	2 U	2 U	
	04/16/02	1 U		1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		5.3	1 U	1 U	1.2	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	07/24/02	1 U		1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.2	1 U	1 U		6.2	1 U	1 U	1 U	1 U	1 U	1.8	1 U	1 U	2 U	2 U	2 U	
	10/22/02	1 U		1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.4	1 U	1 U		8.3	1 U	1 U	1.1	1 U	1 U	2.2	1 U	1 U	2 U	2 U	2 U	
	01/08/03	0.5 U		1 U	1 U	2 U	1 U	1 U	1 U	.1-U	1 U	1 U	2	1 U	1 U	1 U	11	1 U	1 U	1.3	0.5 U	1 U	2.5	1 U	5 U	0.5 U	1 U	1 U	5 U
	04/23/03	0.5 U		1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	11	1 U	1.8	0.5 U	0.5 U	1 U	8	1 U	5 U	0.5 U	1 U	1 U	5 L
	07/29/03	0.5 U		1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	13	1 U	1.8	0.67	0.5 U	1 U	6.5	1 U	5 U	0.5 U	1 U	1 U	5 U
	10/21/03	0.5 U		1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.5	1 U	1 U	1 U	12	1 U	1 U	1.1	0.5 U	1 U	2.6	1 U	5 U	0.5 U	1 U	1 U	5 U
	01/21/04	0.5 U		1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	5.2	1 U	1 U	1 U	18	1 U	1.4	0.68	0.5 U	1 U	1.4	1 U	5 U	0.5 U	1 U	1 U	5 U
	04/20/04	0.5 U		1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	7.3	1 U	1 U	1 U	13	1	1.3	0.67	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 U
MW-02	01/15/89	0.5 U	c	0.5 U	0.5 U	0.5 U			0.2 U	0.01 U	0.01 U	0.2 U	1.8	0.2 U	0.2 U		60	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
	04/15/89	1 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		45	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/89	0.7 U		1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		67	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/15/89	0.5 U		1 U	1 U	1 U			1 U	1 U	1 U		2	1 U	1 U		35	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/15/90								1 U	1 U	1 U	0.4 U	0.54	0.4 U	0.4 U		27	0.4 U			4 U	0.4 U	0.4 U	0.4 U	0.4 L				
	04/15/90	0.5 U	C	0.5 U	0.5 U	1 U			0.5 U	0.5 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U		36	0.2 U			2 U	0.2 U	0.2 U	0.2 U	0.2 \				
	07/15/90	1 U		1 U	1 U	2 U			1 U	1 U	1 U	0.4 U	1	0.4 U	0.4 U		30	0.72	1.6	4.3	0.4 U	0.65	0.4 U	0.4 U	4 U	0.4 U	0.4 U	0.4 U	0.4 \
	10/15/90	0.5 U		1 U	1 U	1 U		1 U					1 U	1 U			24	1 U	1 U	1 U	1 U	1 U		1 U	10				
	01/15/91	0.5 U		1 U	1 U	1 U						1 U	1 U				15	1 U	1 U	1 U	1 U	1 U			1 U				
MW-03	01/15/89	7.4		17	4900	1500			0.2 U	0.01 U	0.01 U	0.2 U	4.6	0.2 U	0.2 U		74	0.2 U	4.4	240	15	13		0.2 U	3.2	0.2 U	0.2 U	0.2 U	0.2
	04/15/89	50 U		50 U	1200	60			5 U	5 U	5 U	5 U	5 U	5 U	5 U		110	23	11	36	47	35		5 U	5 U	5 U	5 U	5 U	
	07/15/89	7 U		10 U	10 U	10 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		120	10 U	10 U	10 U	60	33		10 U	20	10 U	10 U	10 U	
	10/15/89	50 U	1	100 U	1600	150			100 U	100 U	100 U	100 U	100 U	100 U	100 U		100 U	100 U	100 U	100 U	100 U	100 U		100 U	100 U	100 U	100 U	100 U	

Table B-2
PhibroTech, Inc.
Historical Groundwater Analytical Results
Volatile Organic Compounds (VOCs) Analytical Summary

Vell S ımber	ample Sample Date Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	isopropyi- benzene	1,2-DBE	Chioro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Viny! chloride	Chloro ethane	Chloro methane	DCFM
/-03	01/15/90			· · · · · · · · · · · · · · · ·				2 U	5 U	5 U	2 U	5 U	2 U	2 U		65	4	2 U	20	28	23		·	20 U	2 U	5 U	2 U	2 (
	04/15/90	50 U	50 U	2100	720			50 U	50 U	50 U	20 U	20 U	20 U	20 U		74	20 U	20 U	20 U	87	20 U			200 U	20 U	20 U	20 U	20 l
	07/15/90	5 U	5 U	5 U	10 U			5 U	5 U	5 U	2 U	2 U	2 U	2 U		130	14	8,5	3.7	130	46	2 U	2 U	20 U	2 U	2 U	2 U	2
	10/15/90	9	2	1 U	1 U		1 U					1 U	1 U			130	10	1 U	1 U	150	56		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	1 U				38	1 U	1 U	26	74	1 U			1 U				
	04/15/91	0.5 U	1 U	1 U	1 U							1 U	1 U			27	1 U	1 U	1 U	63	17			8.5				
	07/15/91	0,5 U	1 U	1 U	1 U							1 U				28	1 U	1 U	1 U	38	47			6				
	10/15/91	0.5 U	1 U	1 U	1 U							1 U				71	6.7	5.3	1 U	82	4.2			1 U				
	01/15/92											1 U	3			76	7.6	5.7	1 U	202	91	1 U		1 U				
	04/15/92	0.5 U	0.76	1.6	3	1 U			1 U			0.5				25	2.5	1.6	1 U	120	43	1 U	1 U	1.3				
	07/15/92	0.5 U	1 U	1 U	1 U							1 U				76	3.8	5.4	1 U	110	39			3.1				
	10/15/92	0.52	1 U	1 U	1 U							1 U	1 U			130	8.7	8.1	1 U	160	60		1 U	6.9				
	01/15/93	2.5 U	5 U	5 U	5 U							5 U	5 U			84	6.5	6.7	5 U	120	57		5 U	5 U				
	04/20/93	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		12	1.5	1 U	1 U	100 o	29		1 U	11 B	1 U	1 U	1 U	
	07/12/93	0.5 U	3.3	2.6	5.9			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		16	2.5 U	2.5 U	2.5 U	110	37		2.5 U	4.5 IB	2.5 U	2.5 U	2.5 U	
	10/12/93	0.5 U	1 U	2.6	4.8			5 U	5 U	5 U	5 U	5 U	5 U	5 U		17	5 U	5 U	5 U	110	30		5 U	5 U	5 U	5 U	5 U	
	01/11/94	0.5 U	1 U	1 U	1 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		10	2 U	2 U	2 U	120	28		2 U	2 U	2 U	2 U	2 U	
	04/12/94	0.5 U	1 U	1 U	1 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		15	2 U	2 U	2 U	68	26		2 U	2 U	2 U	2 U	2 U	
	07/18/94	0.5 U	1 U	1 U	1 U			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		26	2.5 U	2.5 U	2.5 U	180 o	82		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
	10/11/94	1.2	3.5	1.5	12			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		76	7.5	5.8	2.5 U	120	60		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
	01/17/95	0.5 U	1 U	1 U	1 U			4 U	4 U	4 U	4 U	4 U	4 U	4 U		72	6	5.1	4 U	140	53		4 U	4 U	4 U	4 U	4 U	
1	04/17/95	0.5 U	1 U	1.3	1 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U		57	10 U	10 U	10 U	180	72		10 U	65 B	10 U	10 U	10 U	
	07/11/95	0.5 U	2	5.2	8.8			5 U	5 U	5 U	5 U	5 U	5 U	5 U		9.5	5 U	5 U	5 U	91	35		5 U	5 U	5 U	5 U	5 U	
	10/10/95	0.5 U	1 U	1.7	3.3			10 U	10 U	10 U	10 U	10 U	10 U	10 U		30	10 U	10 U	10 U	110	56		10 U	10 U	10 U	10 U	10 U	
	01/30/96	0.5 U	1 U	1.8	5.2			2 U	2 U	2 U	2 U	2 U	2 U	2 U		26	3.3	3.3	2 U	56	27		2 U	2.5	2 U	2 U	2 U	
	04/15/96	0.5 U	1 U	2.6	3.6			5 U	5 U	5 U	5 U	5 U	5 U	5 U		46	7	5 U	5 U	100	46		5 U	5 U	5 U	5 U	5 U	
	07/16/96	0.5 U	1.8	9	12			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		17	2.5 U	2.5 U	2.5 U	50	23		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
	10/08/96	0.5 U	1 U	5.4	6.2			2 U	2 U	2 U	2 U	2 U	2 U	2 U		21	2.4	2.3	2 U	46	31		2 U	2 U	2 U	2 U	2 U	
-	01/14/97	0.5 U	2.6	1.1	4.2			1 U	1 U	1 U	1 U	1 U	1 U	1 U		28	3.8	2.1	1 U	68	29		1 U	1 U	1 U	1 U	1 U	
	04/15/97	0.5 U	4.3	2.1	3			1 U	1 U	1 U	1 U	7.1	1 U	1 U		13	1.7	1 U	1 U	40	22		1 U	1 U	1 U	1 U	1 U	
1	07/09/97	0.5 U	1 U	2.5	3.7			1 U	1 U	1 U	1 U	8.7	1 U	1 U		13	1.8	1.8	2.3	27	14		1 U	1 U	1 U	1 U	1 U	
	10/15/97	0.57	1 U	1.7	1.2			1 U	1 U	1 U	1 U	3.6	1 U	1 U		24	3	2.6	1.3	34	21		1 U	1 U	1 U	1 U	1 U	
1	01/13/98	0.5 U	1 U	1.3	1 U			1 U	1 U	1 U	1 U	1.6	1 U	1 U		25	3.2	2	1 U	27	19		1 U	1 U	1 U	1 U	1 U	
	04/22/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		18	2.9	1.8	1 U	30	22		1 U	1 U	1 U	1 U	1 U	
1	07/15/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.2	1 U	1 U		25	3.6	2.8	1 U	42	36		1 U	1 U	1 U	1 U	1 U	
	10/20/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.6	1 U	1 U		24	3.4	2.4	1 U	52	40		1 U	1 U	1 U	1 U	1 U	
1	01/15/99	0.5 U	1 U	2.3 U	1 U							1.9				26 U	3.9 U	2.4 U	1 U	23 U	16 U		1 U	1 U				
1	04/15/99	1 U	1 U	1.1 U	2 U							1.6 U	1 U	1 U		21 U	2.7 U	1.4 U	1 U	38 U	24 U	1 U	1 U	1 U				
	07/15/99	1 U	1 U	1.3 U	1 U							37 U	1.8 U			43 U	9 U	3.6 U	1 U	41 U	30 U	1 U	1 U	1 U				
	10/15/99	5 U	5 U	200 U	10 U							5 U	5 U			150 U	23 U	15 U	14 U	61 U	39 U	5 U	5 U	5 U				
	01/15/00	2.5 U	2.5 U	54 U	70 U							19 U				170 U	30 U	18 U	2.5 U	40 U	27 U	8 U	2.5 U	2.5 U				
1	04/15/00	2.5 U	2.5 U	65 U	2.5 U							2.5 U				170 U	30 U	18 U	6 U	65 U	41 U	2.5 U	2.5 U	2.5 U				
	10/15/00	1 U	1 U	2 U	1 U							1 U	1 U			43 U	3.7 U	9.5 U	1 U	1 U	1.3 U	1.1 U	1 U	1 U				

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

le Sample Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane DCFM
5/90	0.5 U	1 U	1 U	1 U		1 U					6.3	1 U			26	1 U	1 U	1 U	1 U	1 U		1 U	1 U			
5/91	0.5 U	1 U	1 U	1 U						1 U	1 U				1 U	1 U	1 U	1 U	1 U	1 U			1 U			
5/91	0.5 U	1 U	1 U	1 U							3.6	1 U			40	1 U	1 U	1 U	1 U	1 U			2			
5/91	0.5 U	1 U	1 U	1 U							1 U				14	1 U	1 U	1 U	1 U	1 U			2.1			
5/91	0.5 U	1 U	1 U	1 U							0.54				10	1 U	1 U	1 U	1 U	1 U			1 U			
5/92											1 U	2			3.6	1 U	1 U	1 U	1 U	1 U	1 U		1 U			
5/92	0.5 U	1 U	1 U	1 U	1 U			1 U			1 U				1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
5/92	0.5 U	1 U	1 U	1 U							1 U				1.2	1 U	1 U	1 U	1 U	1 U			1 U			
5/92	0.5 U	1 U	1 U	1 U							1 U	1 U			2.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U			
5/93	0.5 U	7.4	11	25							1 U	1 U			1.5	1 U	1 U	1 U	1 U	1 U		1 U	1 U			
9/93	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.5	1 U		1 U	1 U	1 U		1 U	1.5 Bi	1 U	1 U	1 U
2/93	0.5 U	3.5	3	7.1			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1.8 IB	1 U	1 U	1 U
2/93	0.5 U	1 U	2.1	4.1			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
0/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.4	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
1/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.6	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
8/94	0.5 U	1.5	1 U	3.7			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	10
0/94	0.5 U	1 U	1 U	5.8			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.5	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
7/95	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	3.5	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
7/95	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	3.6	1 U	1 U		1.3	1 U	1 U	1 U	1 U	1 U		1 U	6.1 B	1 U	1 U	1 U
0/95	0.5 U	2.4	6	9.4			1 U	1 U	1 U	1 U	4.7	1 U	1 U		1.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	10	1 U	10
9/95	0.5 U	1 U	1 U	2			1 U	1 U	1 U	1 U	1.9	1 U	1 U		1.4	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	10	10
0/96	0.5 U	1 U	1 U	1.8			1 U	1 U	1 U	1 U	1.4	1 U	1 U		1.2	1 U	1 U	1 U	1 U	1 U		10	1 U	1 U	1 U	1 U
5/96	0.5 U	1 U	4.1	5.7			1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.4	1 U	1 U	1 U	1 U	10		10	10	10	10	1 U
5/96	0.5 U	1 U	3.5	5.5			1 U	10	1 U	1 U	1 U	1 U	1 U		1.4	1 U	1 U	10	1 U	10		1 U	10	10	10	10
7/96	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	10	1 U	1 U		1.5	1 U	1 U	1 U	1 U	10		10	1 U	1 U	10	1 U
3/97	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	10		1.5	1 U	1 U	10	1 U	1 U		10	10	10	1 U	1 U
5/97	0.5 U	2.3	1 U	1 U			1 U	1 U	1 U	1 U	4.4	1 U	1 U		2.7	1 U	1 U	10	1 U	10		10	10	10	1 U	1 U
08/97	0.5 U	1 U	1 U	1 U			10	1 U	1 U	10	3.9	1 U	10		2.1	1 U	10	1 U	1 U	10		10	1 U	1 U	10	1 U 1 U
4/97	0.5 U	1 U	10	1 U			1 U	1 U	1 U	1 U	2	1 U 1 U	1 U 1 U		3.2	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U
3/98	0.5 U	1 U	1.1	1 U			1 U	1 U			1.8				3				10	1 U		1 U	10	10	1 U	1 U
21/98	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.2	1 U	10	10	1 U			1 U	1 U	10	1 U	1 U
5/98	0.5 U	1 U	1 U				1 U	1 U	1 U	1 U	1 U	1 U	1 U		1.9	1 U	1 U	10	1 U	1 U		10	1 U	1 U	10	10
20/98	0.5 U	1 U	1 U	4.11			1 U	1 U	1 U	1 U	1.1	1 U	1 U		2.4	1 U	1 U	1 U	10	1 U		10	10	10		10
15/99	0.5 U	1 U	1	1 U							1 U	411	4.11		2	1 U	4.11	10	1 U	1 U 1 U	1 U	1 U	1 U			
15/99	1 U	1 U	1.6	2 U							1 U	1 U	1 U		2.1	1 U	10	1 U	1 U			1 U	10			
15/99	1 U	10	1 U	1 U							24	1 U			2.7	1 U	10	1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U			
15/99	1 U	1 U	1 U	2 U							4.9	1 U			2	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U			
15/00	10	1 U	10	_ 1U							21				7.1	1 U	1 U	1 U	10							
												4.11														
							4	4.11	4.11				4.11											211	211	2 U
15/00 15/00 15/01 17/01		1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U	1U 1U 1U 1U 1U 1U	1U 1U 1U 1U 1U 1U 1U 1U	1 U 1 U 1 U 1 U 7.6 1 U 1 U 1 U 1 U 5.6	1U 1U 1U 1U 1U 1U 1U 1U 5.6 1U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 5.6 1 U	1U 1U 1U 1U 7.6 1U 1U 1U 1U 1U 5.6 1U	1 U 1 U 1 U 1 U 7.6 1 U 3.1 1 U 1 U 1 U 1 U 5.6 1 U 2.7	1U 1U 1U 1U 3.1 1U 1U 1U 1U 1U 3.1 1U 1U 1U 1U 2.7 1U	1U 1U 1U 1U 3.1 1U 1U 1U 1U 1U 1U 3.1 1U 1U 1U 1U 1U 2.7 1U 1U	1U <													

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Sample Date Type	Benzene	Toluene	Ethyl- benzene		isopropyi- benzene	1,2-DBE	Chloro benzene	1,2-DCB	1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2, 4 - TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CC14	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
/W-01D	10/16/01	1.5	1 U	1 U	1.5			1 U	1 U	1 U	1 U	5.3	1 U	1 U		3.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	01/15/02	1.6	1 U	1 U	1 U			1 U	1 U	1 U	1 U	2.5	1 U	1 U		1.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	04/16/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	3.9	1 U	1 U		3.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	07/24/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	1.7	1 U	1 U		2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	10/22/02	1 U	1 U	1 U	2 U			1 U	1 U	1 U	1 U	2.5	1 U	1 U		1.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	2 U	
	01/08/03	0.67	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.8	1 U	1 U	1 U	2.2	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 L
	04/23/03	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U	1 U	1 U	1.9	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 U
	07/30/03	0.98	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.6	1 U	1 U	1 U	1.6	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 U
	10/21/03	1.2	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.4	1 U	1 U	1 U	2.4	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 U
	01/21/04	4	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	5.7	1 U	1 U	1 U	10	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 L
	04/20/04	0.58	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	3	1 U	1 U	1 U	6.9	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	5 U	0.5 U	1 U	1 U	5 U
1W-01S	01/15/89	0.01 U	0.01 U	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.02 U	2.8	0.01 U	0.01 U		19	0.01 U	0.01 U	0.7	0.01 U	0.2 U		0.01 U	1 U	0.01 U	0.01 U	0.02 U	0.02 U
	04/15/89	0.7 U	1 U	1 U	3			1 U	1 U	1 U		4	1 U	1 U		23	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/15/89	0.7 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		13	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/15/89	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U		1 U	1 U	1 U		12	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/15/90							0.5 U	0.5 U	0.5 U	0.2 U	3.1	0.2 U	0.2 U		16	0.73	0.2 U	0.3	0.2 U	0.2 U			2 U	0.2 U	0.2 U	0.2 U	0.2 U
	04/15/90	2.5 U	2.5 U	2.5 U	5 U			2.5 U	2.5 U	2.5 U	1 U	3.8	1 U	1 U		20		1 U	1 U	1 U	1 U			10 U	1 U	1 U	1 U	1 U
	07/15/90	0.5 U	0.5 U	0.5 U	1 U			0.5 U	0.5 U	0.5 U	0.2 U	4	0.2 U	0.2 U		18	8.0	0.2 U	1.1	0.2 U	0.3	0.73	0.2 U	2 U	0.2 U	0.2 U	0.2 U	0.2 U
	10/15/90	0.5 U	1 U	10	1 U		1 U					5	1 U			18	1 U	1 U	1 U	1 U	1 U		1 U	1 U				
	01/15/91	0.5 U	1 U	1 U	1 U						1 U	6.8				26	1 U	1 U	1	1 U	1 U			1 U				
	04/15/91	0.5 U	1 U	10	1 U							3.6	1 U			22	1 U	1 U	1 U	1 U	1 U			1.6				
	07/15/91	0.5 U	1 U	10	1 U							3.8				17	1 U	1 U	1 U	1 U	1 U			1.4				
	10/15/91	0.5 U	1 U	1 U	1 U							1.9				14	10	1 U	0.7	1 U	1 U			1.8				
	01/15/92	0.511	4.11									1 U	1 U			13	1 U	1 U	1 U	1 U	1 U	10		1 U				
	04/15/92	0.5 U	1 U	1 U	1 U	1 U			1 U			1.8				9.9	10	10	10	1 U	10	0.87	1 U	1 U				
	07/15/92	0.5 U	1 U	10	1 U							1.6	4.11			10	10	1 U	1 U	1 U	1 U		4.11	10				
	10/15/92	0.95	1 U	1 U	1 U							1 U	1 U			11	10	1 U	1 U	1 U	1 U		1 U	1				
	01/15/93 04/19/93	0.5 U	2.2	1.3	5.6			411	4.11	4.11	4.0	1 U	10	4.11		9.2	10	1 U	10	10	10		10	1 U	4.11	411	411	
	04/19/93	0.5 U 0.5 U	1 U 1.7	1 U 1.7	1 U 4			1 U 1 U	1 U 1 U	1 U 1 U	1.6 1 U	1 U 1 U	1 U 1 U	1 U 1 U		5.7	10	1 U	1.4 1 U	10	1 U 1 U		1 U 1 U	1.2 Bl 1.8 lB	1 U 1 U	1 U 1 U	1 U 1 U	
	10/12/93	0.5 U	1.7 1 U	2.2	4.3			1 U	1 U	1 U	1 U	1 U	1 U	1 U		11 14	1 U 1 U	1 U	10	1 U 1 U	1 U		1 U	1.01B	1 U	1 U	1 U	
	01/10/94	0.5 U	1 U	1 U	4.3 1 U			1 U	1 U	10	1 U	1 U	1 U	10		9.3	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	04/11/94	0.5 U	1 U	1 U	10			1 U	1 U	10	1 U	1 U	1 U	1 U		14	1 U	1 U	1 U		1 U		1 U	1 U	1 U	1 U	1 U	
	07/18/94	0.5 U	1 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U		7.9	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/10/94	0.5 U	1 U	10	5.8			1 U	1 U	10	1 U	1 U	1 U	1 U		13	1 U	10	1 U	1 U 1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/16/95	0.5 U	1 U	1 U	5.6 1 U			1 U	10	1 U	1 U	10	1 U	10		5.2	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	10	1 U	
	04/17/95	0.5 U	1 U	1.3	10			1 U	1 U	10	1 U	1.6	1 U	10		4.4	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	07/10/95	0.5 U	1.2	3.5	6.1			1 U	10	1 U	1 U	1.9	1 U	1 U		6.2	1 U	1 U	1.3	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	10/09/95	0.5 U	1.2 1 U	1.7	3.9			1 U	1 U	10	1 U	1.9 1 U	10	10		15	1 U	1.4	1.3 1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	01/30/96	0.5 U	1 U	1.7	5.1			1 U	1 U	1 U	1 U	10	1 U	10		8.4	1 U	1.4 1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	
	04/15/96	0.5 U	1 U	3.4	4.9			1 U	1 U	1 U	1 U	1 U	10	1 U		2.9	1 U	10	1.2	1 U	1 U		1 U	1 U	1 U	10	1 U	
	07/15/96	0.5 U	1 U	2.2	3.7			1 U	1 U	1 U	1 U	1 U	1 U	10		9.7	10	1 U	1.1	1 U	1 U		1 U	1 U	1 U	10	1 U	

01-Jul-04

Table B-2 PhibroTech, Inc. Historical Groundwater Analytical Results Volatile Organic Compounds (VOCs) Analytical Summary

Well Number	Sample Date	Sample Type	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	Isopropyl- benzene	1,2-DBE	Delizene		1,3-DCB	1,1,2,2- PCA	PCE	1,1,1- TCA	1,1,2- TCA	1,2,4- TCB	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CCI4	CFM	cis- 1,2-DCE	trans- 1,2-DCE	MCL	Vinyl chloride	Chloro ethane	Chloro methane	DCFM
MW-16	10/18/0	1	2 U	2 U	41	2 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		34	13	130	49	2 U	2 U	14	2.8	2 U	4 U	4 U	4 U	
	01/17/02	2	2 U	2 U	2 U	2 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		31	11	100	39	2 U	2 U	8.3	2 U	2 U	4 U	4 U	4 U	
	04/18/02	2	2 U	2 U	2 U	4 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		37	10	110	90	2 U	2 U	6.5	2 U	2 U	4 U	4 U	4 U	
	07/26/02	2	5 U	5 U	5 U	10 U			5 U	5 U	5 U	5 U	5 U	5 U	5 U		47	22	220	35	5 U	5 U	27	5.5	5 U	10 U	10 U	10 U	
	10/24/02	2	2 U	2 U	2 U	4 U			2 U	2 U	2 U	2 U	2 U	2 U	2 U		25	16	120	13	2 U	2 U	20	4.2	2 U	4 U	4 U	4 U	
	01/09/03	3	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U	1 U	1 U	20	11	75	8.1	0.5 U	1 U	14	2.7	5 U	0.59	1 U	1 U	5 U
	04/24/03	3	0.5 U	1 U	8.3	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.2	1 U	1 U	1 U	20	7	63	14	0.5 U	1 U	6.1	1.3	5 U	0.5 U	1 U	1 U	5 U
	07/31/03	3	0.51	1 U	1.5	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2.3	1 U	1 U	1 U	38	19	180	25	0.5 U	1	29	6.1	5 U	0.69	1 U	1 U	5 U
	10/22/03	3	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.5	1 U	1 U	1 U	22	11	100	10	0.5 U	1 U	25	4.2	5 U	0.67	1 U	1 U	5 U
	01/23/04	1	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U	1 U	1 U	17	7.1	63	8.1	0.5 U	1 U	15	3.2	5 U	0.58	1 U	1 U	5 U
	04/21/04	ļ.	0.5 U	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2	1 U	1 U	1 U	19	4.9	39	5.6	0.5 U	1 U	10	2.2	5 U	0.5 U	1 U	1 U	5 U

Notes:

PCA = Tetrachloroethane; PCE = Tetrachloroethane; TCB = Trichloroethane; TCB = Trichloroethane; TCB = Trichloroethane; DCB = Dichloroethane; DCB = Dichlor

All concentrations are reported in micrograms per liter (ug/L).

Only compounds detected in one or more samples are listed.

E = Indicates that the reported concentration is above the calibration range for the instrument. Concentration reported is an estimate only.

J = Indicates detected concentration is below analytical calibration curve, and is below the official reporting limit. Concentration reported is an estimate only.

M-HA = Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information.

M2 = The MS and/or MSD were below acceptance limits due to sample matrix interference.

RL-3 = Reporting Limit elevated due to interference from other analytes.

U = Not detected at a concentration greater than the reporting limit shown.

Sample Type: K = Split sample

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
1W-01D	10/15/90			10 U	5 U		12	20 U	20 U				40 U					44
	01/15/91				5 U		25	20 U	20 U				40 U					20 U
	04/15/91	7.1			5 U		12	20 U	20 U									
	07/15/91	7.4			5 U		10 U	20 U	20 U									
	10/15/91	7.45			5 U		10 U	20 U	20 U									
	04/15/92	7.9			5 U		10 U	20 U	20 U									
	07/15/92	7.3			5 U		10 U	20 U	20 U									
	10/15/92	7.4			5 U		10 U	20 U	20 U									
	01/15/93	7.6			5 U		10 U	20 U	20 U									
	04/19/93	7.8			5 U		10 U	20 U	21									
	07/12/93	7.6			5 U		10 U	20 U	20 U									
	10/12/93	7.6			5 U		10 U	20 U	20 U									
	01/10/94	7.4	,		5 U		10 U	20 U	20 U									
	04/11/94	7.4			5 U		10 U	20 U	20 U									
	07/18/94	7.4			5 U		10 U	20 U	20 U									
	10/10/94	7.4			5 U		10 U	20 U	20 U									
	01/17/95	7.3			5 U		10 U	20 U	20 U									
	04/17/95	7.4			5 U		10 U	20 U	20 U									
	07/10/95	7.4			5 U		10 U	20 U	20 U									
	10/09/95	7.5			5 U		10 U	20 U	20 U									
	01/30/96	7.4			5 U		10 U	20 U	20 U									
	04/15/96	7.6			5 U		10 U	20 U	20 U									
	07/15/96	7.4			5 U		10 U		20 U									
	10/07/96	7.4			5 U		10 U	20 U	20 U							,		
	01/13/97	7.4			5 U		10 U	20 U	20 U									
	04/15/97	7.5			5 U		10 U	20 U	20 U									
	07/08/97	7.6			5 U		10 U	20 U	20 U									
	10/14/97	7.4			5 U		10 U	20 U	20 U									
	01/13/98	7.4			5 U		10 U	20 U	20 U									
	04/21/98	7.6			5 U		10 U	20 U	20 U									
	07/15/98	7.5			5 U		10 U		20 U									
	10/20/98	7.2			5 U		10 U		20 U									

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	pН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-01D	01/15/99	7.2			5 U		10 U		20 U									
	04/15/99	7.4			5 U		10 U		25 U									
	07/15/99	7.6			5 U		10 U	20 U	25 U									
	10/15/99	7.2			5 U		10 U		25 U									
	01/15/00	7.3			5 U		10 U		25 U									
	04/15/00	7.5			5 U		10 U	10 U	25 U									
	10/15/00	7.5			5 U		10 U	20 U	25 U									
	04/15/01	7.3			5 U		10 U		25 U									
	07/17/01	7.3			5 U		10 U	5.5	25 U									
	10/16/01	7.4			5 U		10 U	2 U	25 U									
	01/15/02	7.5			5 U		10 U	2 U	25 U									
	04/16/02	7.5			5 U		10 U	2 U	25 U									
	07/24/02	7.5			5 U		10 U	5	25 U									
	10/22/02	7.4			5 U		10 U	1 U	25 U									
	01/08/03	7.29			5 U		1.5 J	1 U	22									
	04/23/03	7.14			5 U		5 U	1 U	10 U									
	07/30/03	7.55			5 U		24	1 U	13									
	10/21/03	7.44			5 U		5 U	1 U	21									
	01/21/04	7.39			5 U		5 U	1 U	10 U									
	04/20/04	7.23			5 U		5 U	1 U	41									
MW-01S	01/15/89	7.1			3 U		14 U	10 U	9 U									15
	04/15/89				10 U		100	50 U	20 U									20 U
	07/15/89	7.11			10 U		60	50 U	30									60
	10/15/89				10 U		20 U	50 U	50 U									110
	01/15/90	7.03			10 U		10 U	20 U	20 U									20
	04/15/90	6.96			5 U		20 U	20 U	20 U									20
		7.25			10 U		10 U	20 U	30									30
	10/15/90			10 U	5 U		10 U	20 U	23				40 U					23
	01/15/91				5 U		10 U	20 U	20 U				40 U					51
	04/15/91	7.3			5 U		10 U	20 U	20 U									
	07/15/91	7			5 U		10 U	20 U	20 U									
	10/15/91	7.01			5 U		10	20 U	20									

CDM Page 2 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium Vanadium	n Zinc
MW-01S	04/15/92	7.3		5 U		10 U	20 U	20 U						****		
	07/15/92	7.1		5 U		10 U	20 U	20 U								
	10/15/92	6.9		5 U		10 U	20 U	35								
	01/15/93	7.1		5 U		10 U	20 U	20 U								
	04/19/93	7		5 U		10 U	20 U	20 U								
	07/12/93	7		5 U		10 U	20 U	20 U								
	10/12/93	6.8		5 U		10 U	20 U	20 U								
	01/10/94	6.8		5 U		10 U	20 U	20 U								
	04/11/94	6.8		5 U		10 U	20 U	20 U								
	07/18/94	7.1		5 U		10 U	20 U	20 U								
	10/10/94	6.8		5 U		10 U	20 U	20 U								
	01/16/95	6.8		5 U		10 U	20 U	20 U								
	04/17/95	7.1		5 U		10 U	20 U	20 U								
	07/10/95	7		5 U		10 U	20 U	20 U								
	10/09/95	6.7		5 U		10 U	20 U	20 U								
	01/30/96	6.8		5 U		10 U	20 U	20 U								
	04/15/96	7.1		5 U		10 U	20 U	20 U								
	07/15/96	6.8		5 U		10 U		20 U								
	10/07/96	6.7		5 U		10 U	20 U	20 U								
	01/13/97	6.8		5 U		10 U	20 U	22								
	04/15/97	6.8		5 U		10 U	20 U	20 U								
	07/08/97	6.6		5 U		10 U	20 U	20 U								
	10/14/97	6.6		5 U		10 U	20 U	23								
	01/13/98	6.7		5 U		10 U	20 U	20 U								
	04/21/98	6.8		5 U		10 U	20 U	21								
	07/14/98	6.6		5 U		10 U	20 U	20 U								
	10/19/98	6.9		5 U		10 U	20 U	20 U								
	01/15/99	6.7		5 U		10 U	10 U	20 U								
	04/15/99	6.9		5 U		10 U	25 U	25 U								
	07/15/99	7		5 U		10 U	20 U	52								
	10/15/99	6.8		5 U		10 U	10 U	25 U								
	01/15/00	7		5 U		10 U	20 U	25 U								
	04/15/00	6.9		5 U		10 U	10 U	25 U								

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
/W-01S	10/15/00	6.9			5 U		10 U	20 U	25 U									
	04/15/01	6.6			5 U		10 U	2 U	25 U									
	07/17/01	6,6			5 U		10 U	2 U	25 U									
	10/16/01	6.8			5 U		10 U	6.2	25 U									
	01/15/02	7.1			5 U		10 U	20 U	25 U									
	04/16/02	7.1			5 U		10 U	2 U	25 U									
	07/24/02	7			5 U		10 U	1.8	25 U									
	10/22/02	6.9			5 U		10 U	1 U	25 U									
	01/08/03	6.78			5 U		2.4 J	1 U	10 U									
	04/23/03	6.86			10 RL-3,U		10 RL-3,U	1 U	20 RL-3,U									
	07/29/03	6.76			10 RL-3,U		10 RL-3,U	1 U	30 RL-3									
	10/21/03	6.94			5 U		5 U	1 U	10 U									
	01/21/04	6.91			5 U		5 U	1 U	10 U									
	04/20/04	7.11			5 U		5 U	1 U	10 U									
1W-02	01/15/89	7.5			3 U		22	17	9 U									6 U
	04/15/89				10 U		50	50 U	20 U									20 U
	07/15/89	7.32			10 U		60	50 U	20 U									40
	10/15/89				10 U		20 U	50 U	50 U									20 U
	01/15/90	7.7			10 U		10 U	20 U	20 U									10 U
	04/15/90	7.33			5 U		20 U	20 U	20 U									10
	07/15/90	7.58			10 U		10 U	20 U	30									40
	10/15/90			10 U	5 U		10 U	20 U	20 U				40 U					55
	01/15/91				5 U		10	20 U	20 U				40 U					20 U
/IW-03	01/15/89	7.1			3 U		14 U	10 U	9 U									6 U
	04/15/89				10 U		70	50 U	20 U									20 U
	07/15/89	7.05			10 U		60	50 U	20 U									200
	10/15/89				10 U		20 U	50 U	50 U									20 U
	01/15/90	7.41			10 U		10 U	20 U	20 U									10 U
	04/15/90	6.7			5 U		20 U	20 U	20 U									10 U
	07/15/90	7.14			10 U		10 U	20 U	20 U									30
	10/15/90			10 U	5 U		10 U	20 U	20 U				40 U					20 U

CDM Page 4 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рH	Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium Vanadiur	n Zinc
MW-03	01/15/91			5 U		10 U	20 U	20 U				40 U				20 U
	04/15/91	7.3		5 U		10 U	20 U	20 U								
	07/15/91	7.6		5 U		10 U	20 U	20 U								
	10/15/91	7.19		5 U		10 U	20 U	30								
	04/15/92	7.8		5 U		10 U	20 U	20 U								
	07/15/92	7.2		5 U		23	20 U	130								
	10/15/92	7.2		5 U		10 U	20 U	38								
	01/15/93	7.4		5 U		10 U	20 U	96								
	04/20/93	7.2		5 U		10 U	20 U	20 U								
	07/12/93	7.4		5 U		10 U	20 U	20 U								
	10/12/93	7.2		5 U		10 U	20 U	20 U								
	01/11/94	6.6		5 U		10 U	400	20 U								
	04/12/94	7.2		5 U		10 U	20 U	20 U								
	07/18/94	7.3		5 U		10 U	20 U	20 U								
	10/11/94	7		5 U		10 U	20 U	20 U								
	01/17/95	7.1		5 U		10 U	20 U	20 U								
	04/17/95	7.2		5 U		10 U	20 U	20 U								
	07/11/95	7.3		5 U		10 U	20 U	20 U								
	10/10/95	7.2		5 U		10 U	20 U	20 U								
	01/30/96	7.4		5 U		10 U	20 U	20 U								
	04/15/96	7.3		5 U		10 U	20 U	20 U								
	07/16/96	7.4		5 U		10 U		20 U								
	10/08/96	7.2		5 U		10 U	20 U	20 U								
	01/14/97	7.2		5 U		10 U	20 U	20 U								
	04/15/97	7.2		5 U		10 U	20 U	20 U								
	07/09/97	7.2		5 U		10 U	20 U	20 U								
	10/15/97	7.2		5 U		10 U	20 U	20 U								
	01/13/98	7.2		5 U		10 U	20 U	20 U								
	04/22/98	7.5		5 U		10 U	20 U	20 U								
	07/15/98	7.3		5 U		10 U	20 U	20 U								
	10/20/98	7.1		5 U		10 U	20 U	20 U								
	01/15/99	7.2		5 U		10 U	20 U	20 U								
	04/15/99	7.2		5 U		10 U	25 U	25 U								

Table B-3 Phibro-Tech, Inc. **Historical Groundwater Analytical Results** Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thailium	Vanadium	Zinc
MW-03	07/15/99	7.3			5 U		10 U	20 U	25 U									
	10/15/99	7.1			5 U		10 U	10 U	25 U									
	01/15/00	7.2			5 U		10 U	20 U	25 U									
	04/15/00	7.2			5 U		10 U	10 U	25 U									
	10/15/00	7.3			5 U		10 U	20 U	25 U									
	04/15/01	7.1			5 U		17 U	0.69	25 U									
	07/17/01	7			5 U		10 U	2 U	25 U									
	10/17/01	7.1			5 U		10 U	2 U	25 U									
	01/16/02	7.2			5 U		10 U	2 U	25 U									
	04/16/02	7.1			5 U		10 U	2 U	25 U									
	07/24/02	7.1			5 U		10 U	1 U	25 U									
	10/22/02	7.2			5 U		10 U	1 U	25 U									
	01/08/03	6.98			5 U		5 U	1 U	10									
	04/23/03	7.08			5 U		5 U	1 U	10 U									
	07/29/03	7.09			5 U		5 U	1 U	10 U									
	10/21/03	7.3			5 U		5 U	1 U	10 U									
	01/21/04	7.12			5 U		5 U	1 U	10 U									
	04/20/04	7.24			5 U		5 U	1 U	10 U									
MW-04	01/15/89	7.1			3 ∪		400000	33000	9 U									7
	04/15/89				50		100000	43000	20 U									20 U
	07/15/89	6.67			80		98000	120000	60									90
	10/15/89				70		120000	110000	50 U									40
	01/15/90	6.7			120		95100	109000	20 U									10 U
	04/15/90	6.59			130		80700	81700	20 U									10 U
	07/15/90	6.68			350		101000	100000	20 U									40
	10/15/90			49	23		48400	58900	22				40 U					51
	01/15/91				260		65300	49400	20 U				40 U					98
	04/15/91	7			76		18400	23800	20 U									
	07/15/91	6.7			610		78500	39100	20 U									
	10/15/91	6.91			210		40800	42000	20 U									
	04/15/92	6.8			840		29200	32200	53									
	07/15/92	6.6			860		59700	79900	20 U									

CDM Page 6 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium Vanadium	Zinc
MW-04	10/15/92	6.8		320		27100	21600	20 U								
	01/15/93	7		280		27400	16400	20 U								
	04/20/93	7.3		5 U		2400	2100	20 U								
	07/13/93	7		190		23300	18700	53								
	10/13/93	6.9		710 G		80300 G	35500	200 UG								
	10/14/93	7.1		5 U		10 U	40 UG	20 U								
	01/11/94	7.2		260		35700	20 U	20 U								
	04/13/94	6.8		330		26400	26900	20 U								
	07/19/94	6.8		200		41400	59000	38								
	10/11/94	6.5		450		52800	60700	20 U								
	01/18/95	6.7		130		34300	28800 a	26								
	04/18/95	7		210		9100	8600	52								
	07/12/95	6.7		270		29600	28100	100								
	10/10/95	6.7		380		28900	20 U	20 U								
	01/31/96	7.1		190		32400	25700	20 U								
	04/16/96	6.9		600		38000	32200	20 U								
	07/16/96	7		280		58900		20 U								
	10/09/96	6.8		460 G		75700 G	63800	40 UG								
	01/14/97	6.8		540		34500	45900	20 U								
	04/16/97	6.9		530		18800	27300	20 U								
	07/09/97	6.8		620		35200	36000	20 U								
	10/16/97	6.6		640 G		85300 G	73800	80 UG								
	01/14/98	6.9		530		44000	39200	20 U								
	04/22/98	7.3		430		14100	7200	20 U								
	07/15/98	7		320		19000	16300 U	20 U								
	10/21/98	6.8		450		36200	34100 U	25								
	01/15/99	6.7		410 U		42800 U	570 U	40 U								
	04/15/99	6.7		410 U		42800	4600	50 U								
	04/15/99 K						5700 U									
	07/15/99	6.9		420 U		49700 U	41100 U	50 U								
	10/15/99	6.5		590 U		105000	58200	75 U								
	01/15/00	6.7		320 U		60000 U	76300 U	50 U								
	04/15/00	6.9		550 U		39300 U	32900 U	50 U								

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

	Sample Sa Date		рН	Antimony A	rsenic	Barium	Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	ı Zinc
MW-04	10/15/00		7					520 U	T	42100 U	45600 U	50 U					-				
	04/15/01		6.8					380 U		16800 U	11000 U	25 U									
	07/18/01		6.9					320		12600	15000	25 U									
	07/18/01	K	6.8					310		11900	14000	25 U									
	10/18/01		6.9					440		39800	32000	50 U									
	10/18/01	K	6.8					400		28900	33000	50 U									
	01/17/02		6.7					410		24400	18000	50 U									
	01/17/02	K	6.9					350		18900	18000	25 U									
	04/18/02		6.8					440		27400	31000	50 U									
	04/18/02	K	6.8					430		26300	31000	50 U									
	07/25/02		6.7					500		32700	25100	120 U									
	07/25/02	K	6.7					490		29800	30500	120 U									
	10/23/02		6.7	20 RL-3,U 10 F	RL-3,U	340	8 RL-3,U	600	20 RL-3,U	29000	32600	120 U	10 RL-3,U	1.2	40 RL-3,U	20 RL-3,U	16	20 RL-3,U	10 RL-3,U	20 RL-3,U 4	40 RL-3,U
	10/23/02	K	6.7	20 RL-3,U 10 F	RL-3,U	660	8 RL-3,U	630	20 RL-3,U	30600	30300	120 U	10 RL-3,U	1.4	40 RL-3,U	20 RL-3,U	10 RL-3,U	20 RL-3,U	10 RL-3,U	20 RL-3,U	160
	12/30/02		7.39					260		9200	11000	20 RL-3,U									
	12/30/02	K	6.71					250		9400	9400	20 RL-3,U									
	04/25/03		6.92					290		16000	14000	20 RL-3,U									
	04/25/03	K	6.99					290		16000	20000	20 RL-3,U									
	07/30/03		6.88					410		30000	29000	30 RL-1,U									
	07/30/03	K	6.83					470		37000	33000	50 RL-1,U									
	10/23/03		6.85	20 RL-1,U	15	440	8 RL-1,U	240	20 RL-1,U	21000	20000	20 RL-1,U	10 RL-1,U	1.4	40 RL-1,U	20 RL-1,U	10 RL-1,U	20 RL-1,U	10 RL-1,U	20 RL-1,U	46
	10/23/03	K	6.74	20 RL-3,U 10 F	RL-3,U	260	8 RL-3,U	210	20 RL-3,U	18000	21000	20 RL-3,U	10 RL-3,U	0.95	40 RL-3,U	20 RL-3,U	10 RL-3,U	20 RL-3,L	23	20 RL-3,U 4	40 RL-3,U
	01/23/04		6.71					320		22000	28000	20 RL-1,U									
	01/23/04	K	6.78					270		16000	29000	20 RL-1,U									
	04/21/04		6.88					290		20000	24000	30 RL-1,U									
	04/21/04	K	6.83					340		23000	28000	40 RL-1,U									
MW-04A	01/15/89		7.7					3 U		14 U	10 U	9 U									8
	04/15/89							10 U		50	50 U	20 U									20 U
	07/15/89		7.44					10 U		130	50 U	20 U									80
	10/15/89							10 U		20 U	50 U	50 U									20 U
	01/15/90		7.41					10 U		10 U	20 U	20 U									10 U
	04/15/90		7.38					5 U		20 U	20 U	20 U									10 U

CDM Page 8 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium Vanadium	ı Zinc
MW-04A	07/15/90	7.77			10 U		10 U	20 U	30								40
	10/15/90			33	5 U		38	20 U	20 U				40 U				700
	01/15/91				5 U		10 U	20 U	20 U				40 U				20 U
	04/15/91	7.4			5 U		10 U	20 U	20 U								
	07/15/91	7.6			5 U		10 U	20 U	20 U								
	10/15/91	7.33			5 U		10 U	20 U	20 ∪								
	04/15/92	7.6			5 U		10 U	20 U	20 U								
	07/15/92	7.4			30		10 U	20 U	20 U								
	10/15/92	7.7			5 U		11	20 U	31								
	01/15/93	7.6			5 U		10 U	20 U	20 U								
	04/20/93	7.4			5 U		10 U	20 U	20 U								
	07/13/93	7.5			5 U		10 U	20 U	30								
	10/13/93	7.5			5 U		10 U	20 U	20 U								
	01/11/94	7.4			5 U		120	20 U	20 U								
	04/13/94	7.5			5 U		10 U	20 U	20 U								
	07/19/94	7.5			5 U		53	20 U	23								
	10/12/94	7.3			5 U		10 U	20 U	22								
	01/18/95	7.4			5 U		10 U	20 U	20 U								
	04/18/95	7.4			5 U		10 U	20 U	20 U								
	07/12/95	7.4			5 U		10 U	20 U	20 U								
	10/10/95	7.4			5 U		10 U	20 U	20 U								
	01/31/96	7.5			5 U		21	20 U	21								
	04/16/96	7.4			5 U		27	20 U	20 U								
	07/16/96	7.6			5 U		18		20 U								
	10/09/96	7.6			5 U		24	20 U	20 U								
	01/14/97	7.5			5 U		18	20 U	20 ∪								
	04/16/97	7.5			5 U		16	20 U	20 U								
	07/09/97	7.6			5 U		13	20 U	20 U								
	10/16/97	7.4			5 U		15	20 U	20 U								
	01/14/98	7.7			5 U		20	20 U	20 U								
	04/22/98	7.8			5 U		18	20 U	20 U								
	07/15/98	7.5			5 U		10 U		20 U								
	10/20/98	7.6			5 U		22		20 U								

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рΗ	Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
/W-04A	01/15/99	7.54		5 U		12	10 U	25 U									
	04/15/99	7.54		5 U		12	10 U	25 U									
	07/15/99	7.6		5 U		10 U	20 U	25 U									
	10/15/99	7.1		5 U		10 U		25 U								,	
	01/15/00	7.8		5 U		15		25 U									
	04/15/00	7.6		5 U		10 U	10 U	25 U									
	10/15/00	6.8		5 U		10 U	20 U	25 U									
	04/15/01	7.3		5 U		10 U	5.6	25 U									
	07/18/01	7.2		5 U		10 U	5.5	25 U									
	10/17/01	7.5		5 U		10 U	7.7	25 U									
	01/16/02	5.9		5 U		10 U	5.2	25 U									
	04/17/02	7.3		5 U		10 U	6.8	25 U									
	07/25/02	7.6		5 U		10 U	6.2	25 U									
	10/23/02	7.3		5 U		10 U	6.1	25 U									
	01/09/03	7.29		5 U		8.9	5.8	23									
	04/24/03	7.17		5 U		7.7	5.5	35									
	07/30/03	6.92		5 U		5 U	2.9	24									
	10/21/03	7.02		5 บ		5 U	1 U	25									
	01/22/04	7.3		5 U		5 U	2.7	30									
	04/21/04	7.59		5 U		5 U	5.6	45									
/W-05	01/15/89	7.4		3 U		14 U	10 U	9 U									6 U
	04/15/89			10 U		40	50 U	20 U									20 U
	07/15/89	6.83		10 U		40	50 U	20 U									90
	10/15/89			10 U		20 U	50 U	50 U									20 U
	01/15/90	7.03		10 U		10 U	20 U	20 U									10 U
	04/15/90	7.12		5 U		20 U	20 U	20 U									20
	07/15/90	7.08		10 U		10 U	20 U	20 U									20
	10/15/90			10 U 5 U		10 U	20 U	20 U				40 U					200
	01/15/91			5 U		10 U	20 U	20 U				40 U					2700
W-06B	01/15/89	7.4		3 U		14 U	10 U	9 U									21
	04/15/89			10 U		60	50 U	20 U									20 U

CDM Page 10 of 27 2279-111/pti.mdb 01-Jul-04

ngà thua thua thai thing thua thing thing thus thus the time their thing thing the time

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium Vanadium	Zinc
MW-06B	07/15/89	7.3			10 U		40	50 U	20 U								90
	10/15/89				10 U		20 U	50 U	50 U								20 U
	01/15/90	7.36			10 U		10 U	20 U	20 U								20
	04/15/90	7.57			10 U		20	20 U	20 U								10
	10/15/90			33	5 U		12	20 U	20 U				40 U				58
	01/15/91				5 U		10 U	20 U	20 U				40 U				24
	04/15/92	7.4			5 U		14	20 U	20 U								
	07/15/92	7.4			5 U		19	20 U	54								
	10/15/92	7.4			5 U		10 U	20 U	20 U								
	01/15/93	7.5			5 U		11	20 U	38								
	04/21/93	6.9			5 U		14	20 U	20 U								
	07/13/93	7.6			5 U		10 U	20 U	20 U								
	10/13/93	7.4			5 U		11	20 U	20 U								
	01/11/94	7.4			5 U		10 U	20 U	20 U								
	04/12/94	7.3			5 U		10 U	20 U	20 U								
	07/19/94	7.4			5 U		10 U	20 U	20 U								
	10/12/94	7.2			5 U		10 U	20 U	20 U								
	01/17/95	7.3			5 U		10 U	20 U	20 U								
	04/18/95	7.3			5 U		10 U	20 U	20 ∪								
	07/11/95	7.4			5 U		10 U	20 U	20 U								
	10/10/95	7.3			5 U		10 U	20 U	20 U								
	01/30/96	7.4			5 U		10 U	20 U	20 U								
	04/16/96	7.4			5 U		11	20 U	20 U								
	07/16/96	7.5			5 U		10 U		20 U								
	10/08/96	7.1			5 U		10 U	20 U	20 ∪								
	01/14/97	7.4			5 U		10 U	20 U	20 U								
	04/16/97	7.3			5 U		10 U	20 U	20 U								
	07/09/97	7.4			5 U		10 U	20 U	20 U								
	10/15/97	7			5 U		10 U	20 U	20 U								
	01/14/98	7.3			5 U		10 U	20 U	20 U								
	04/22/98	7.6			5 U		10 U	20 U	20 U								
	07/15/98	7.4			5 U		10 U	20 U	20 U								
	10/20/98	7.1			5 U		10 U	20 U	20 U								

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

04 07 10 01 04		7.01 7.01 7.4 7.2 7.4 7.4 7.6 7.2	5 U 5 U 5 U 5 U 5 U 5 U	10 U 10 U 10 U 10 U	10 U 10 U 20 U	20 U 25 U	,					
07 10 01 04 10	07/15/99 0/15/99 0/15/99 0/1/15/00 0/15/00 0/15/00 0/15/01	7.4 7.2 7.4 7.4 7.6 7.2	5 U 5 U 5 U	10 U								
10 01 04 10	0/15/99 11/15/00 14/15/00 0/15/00 14/15/01 17/18/01	7.2 7.4 7.4 7.6 7.2	5 U 5 U		20 U							
01 04 10	01/15/00 04/15/00 0/15/00 04/15/01 07/18/01	7.4 7.4 7.6 7.2	5 U	10 U		25 U						
04 10	04/15/00 0/15/00 04/15/01 07/18/01	7.4 7.6 7.2			10 U	25 U						
10	0/15/00 4/15/01 7/18/01	7.6 7.2	511	10 U	20 U	25 U						
	4/15/01 7/18/01	7.2		10 U	10 U	25 U						
04	7/18/01		5 U	10 U	20 U	25 U						
0-			5 U	10 U	5.1	25 U						
07	0/17/01	7.2	5 U	10 U	5.3	25 U						
10		7.5	5 U	10 U	4.9	25 U						
01	1/16/02	7.4	5 U	10 U	5.1	25 U						
04	4/17/02	7.4	5 U	10 U	6.6	25 U						
07	7/25/02	7.4	5 U	10 U	3.6	25 U						
10	0/23/02	7.3	5 U	10 U	1 U	25 U						
01	1/09/03	7.18	5 U	9.7	6.8	10 U						
04	4/24/03	7.43	5 U	7.8	7.3	10 U						
07	7/30/03	7.73	5 U	5 U	4.3 O-09	10						
10	0/22/03	7.63	5 U	5 U	1 U	10 U						
01	1/22/04	7.17	5 U	5 U	1 U	10 U						
04	4/20/04	7.4	5 U	5 U	3.1	10 U						
MW-06D 10	0/15/90		31 5 U	10 U	20 U	20			40 U			78
01	1/15/91		5 U	10 U	20 U	20 U			40 U			22
04	4/15/92	7.3	5 U	10 U	20 U	20 U						
07	7/15/92	7.3	5 U	10 U	20 U	20 U						
10	0/15/92	7.4	5 U	10 U	20 U	20 U						
01	1/15/93	7.4	5 U	12	20 U	95						
04	4/21/93	6.9	5 U	12	20 U	20 U						
07	7/13/93	7.7	5 U	10 U	20 U	20 U						
10	0/13/93	7.4	5 U	11	20 U	20 ∪						
01	1/11/94	7.3	5 U	10 U	20 U	20 U						
04	4/12/94	7.3	5 U	10 U	20 U	20 U						
07	7/19/94	7.4	5 U	10 U	20 U	20 U						

CDM Page 12 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium '	Vanadium	Zinc
MW-06D	10/12/94	7.3			5 U		10 U	20 U	20 ∪									
	01/18/95	7.4			5 U		10 U	20 U	20 U									
	04/18/95	7.4			5 U		10 U	20 U	20 U									
	07/11/95	7.4			5 U		10 U	20 U	20 U									
	10/10/95	7.4			5 U		10 U	20 U	20 U									
	01/30/96	7.4			5 U		10 U	20 U	20 U									
	04/16/96	7.5			5 U		10 U	20 U	20 U									
	07/16/96	7.5			5 U		10 U		20 U									
	10/08/96	7.5			5 U		10 U	20 U	20 U									
	01/14/97	7.4			5 U		10 U	20 U	20 U									
	04/16/97	7.4			5 U		10 U	20 U	20 U									
	07/09/97	7.4			5 U		10 U	20 U	20 U									
	10/15/97	7.4			5 U		10 U	20 U	31									
	01/14/98	7.4			5 U		10 U	20 U	24									
	04/22/98	7.7			5 U		10 U	20 U	20 U									
	07/15/98	7.4			5 U		10 U		20 U									
	10/20/98	7.4			5 U		10 U		20 U									
	01/15/99	7.26			5 U		10 U	10 U	25 U									
	04/15/99	7.26			5 U		10 U	10 U	25 U									
	07/15/99	7.5			5 U		10 U	20 U	25 U									
	10/15/99	7.3			5 U		10 U	10 U	25 U									
	01/15/00	7.4			5 U		10 U	20 U	25 U									
	04/15/00	7.5			5 U		10 U	10 U	25 U									
	10/15/00	7.5			5 U		10 U	20 U	25 U									
	04/15/01	7.3			5 U		10 U	2.6	25 U									
	07/18/01	7.3			5 U		10 U	2.4	25 U									
	10/17/01	7.6			5 U		10 U	2 U	25 U									
	01/16/02	7.4			5 U		10 U	2 U	25 U									
	04/17/02	7.5			5 U		10 U	2.7	25 U									
	07/25/02	7.4			5 U		10 U	1.5	25 U									
	10/23/02	7.4			5 U		10 U	2.5	43									
	01/08/03	7.41			5 U		2 J	1.8	12									
	04/24/03	7.23			5 U		5 U	2.1	10 U									

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-06D	07/30/03	7.28			5 U		5 U	2.3 O-09	14									
	10/22/03	7.84			5 U		5 U	2	14									
	01/22/04	7.35			5 U		5 U	3	10 U									
	04/20/04	7.56			5 U		5 U	3.2	10 U									
MW-07	01/15/89	9.1			3 U		14 U	10 U	9 U									6 U
	04/15/89				10 U		20 U	50 U	20 U									20 U
	07/15/89	7.68			10 U		30	50 U	20 U									40 U
	10/15/89				10 U		20 U	50 U	50 U									20 U
	01/15/90	7,69			10 U		10 U	20 U	20 U									10 U
	04/15/90	7.91			5 U		20 U	20 U	20 U									10 U
	07/15/90	7.57			10 U		10 U	20 U	20 U									20
	10/15/90			10 U	5 U		10 U	20 U	20 U				40 U					190
	01/15/91				5 U		10 U	20 U	20 U				40 U					94
	04/15/91	7.4			5 U		10 U	20 U	20 U									
	07/15/91	7.2			5 U		10 U	20 U	20 U									
	10/15/91	7.22			5 U		10 U	20 U	10									
	04/15/92	7.2			5 U		13	20 U	32									
	07/15/92	7.1			5 U		95	20 U	210									
	10/15/92	7.1			5 U		63	20 U	650									
	01/15/93	7.1			5 U		33	20 U	190									
	04/22/93	7.1			5 U		11	20 U	20 U									
	07/13/93	7.3			5 U		10 U	20 U	20 U									
	10/13/93	6.6			5 U		10 U	200 UG	20 U									
	01/11/94	6.8			5 U		10 U	20 U	20 U									
	04/12/94	6.9			5 U		10 U	20 U	20 U									
	07/19/94	6.7			5 U		10 U	20 U	23									
	10/12/94	6.7			5 U		10 U	20 U	20 U									
	01/18/95	6.5			5 U		10 U	20 U	26									
	04/18/95	7			5 U		10 U	20 U	20 U									
	07/11/95	6.7			5 U		10 U	20 U	20 U									
	10/10/95	6.6			5 U		14	20 U	79									
	01/31/96	6.6			5 U		10 U	20 U	43									

CDM Page 14 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well :	Sample Sample Date Type	рН	Antimony A	Arsenic	Barium Ber	yllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-07	04/16/96	6.9				5 U		10 U	20 U	20 U									
	07/16/96	6.9				5 U		10 U		20 U									
	10/08/96	6.5				5 U		10 U	20 U	36									
	01/14/97	6.6				5 U		10 U	20 U	29									
	04/16/97	6.8				5 U		10 U	20 U	20 U									
	07/09/97	6.8				5 U		10 U	20 U	20 U									
	10/15/97	6.5				5 U		10 U	20 U	25									
	01/14/98	6.7				5 U		10 U	20 U	44									
	04/22/98	7,2				5 U		10 U	20 U	20 U									
	07/15/98	6.7				5 U		10 U	20 U	20 U									
	10/20/98	6.6				5 U		10 U	20 U	42									
	01/15/99	6.81				5 U		10 U	20 U	50 U									
	04/15/99	6.81				5 U		10 U	10 U	42 U									
	07/15/99	7				10 U		20 U	20 U	68 U									
	10/15/99	6.8				5 U		10 U	10 U	71 U									
	01/15/00	7.3				5 U		10 U	20 U	25 U									
	04/15/00	7				5 U		10 U	10 U	35 U									
	10/15/00	7.6				5 U		10 U	20 U	57 U									
	04/15/01	6.7				5 U		10 U	0.98	25 U									
	07/18/01	6.6				5 U		10 U	2 U	37									
	10/18/01	6.7				10 U		20 U	2 U	73									
	01/17/02	7.2				5 U		10 U	2 U	34									
	04/18/02	7.1				5 U		10 U	2 U	57									
	07/26/02	6.9				5 U		10 U	1 U	25 U									
	10/23/02	7.5	10 U	5 U	400	4 U 5 U	10 U	10 U	1 U	25 U	5 U	0.39	20 U	10 U	8.5	10 U	5 U	10 U	140
	12/30/02	7.45				5 U		5 U	1 U	10 U									
	04/24/03	6.97				5 U		5 U	1 U	32									
	07/30/03	6.75				5 U		5 U	0.38 O-09	10 U									
	10/23/03	7.31	10 U	5 U	110	4 U 5 U	10 U	5 U	1 U	10 U	5 U	0.2 U	20 U	10 U	8.5	10 U	5 U	10 U	20 U
	01/22/04	6.88				5 U		5 U	1 U	10 U									
	04/21/04	7.35				5 U		5 U	1 M2,U	10 U									
MW-08	01/15/89	7.4				3 U		14 U	10 U	9 U									9

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium (Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium Vanadium	Zinc
/W-08	04/15/89				10 U		30	50 U	20 U								20 U
	07/15/89	7.28			10 U		60	50 U	20 U								50
	10/15/89				10 U		20 U	50 U	50 U								20 U
	01/15/90	7.63			10 U		10 U	20 U	20 U								10 U
	04/15/90	7.24			5 U		20 U	20 U	20 U								20
	07/15/90	7.43			10 U		10 U	20 U	20 U								30
	10/15/90			10 U	5 U		10 U	20 U	20 U				40 U				28
	01/15/91				5 U		10 U	20 U	20 U				40 U				780
W-09	01/15/89	7.3			3 U		330	450	9 U								8
	04/15/89				10 U		60	50 U	20 U								20 U
	07/15/89	7.18			10 U		170	50 U	20 U								80
	10/15/89				10 U		1800	2500	50 U								20 U
	01/15/90	7.41			10 U		2200	2280	20 U								20
	04/15/90	7.15			5 U		810	800	20 U								30
	07/15/90	7.32			10 U		40	30	20 U								30
	10/15/90			10 U	5 U		190	250	62				40 U				120
	01/15/91				5 U		85	124	20 U				40 U				460
	04/15/91	7.3			5 U		10 U	20 U	20 U								
	07/15/91	7.2			5 U		27	20 U	20 U								
	10/15/91	7.04			5 U		70	50	20 U								
	04/15/92	7.2			5 U		10 U	20 U	20 U								
	07/15/92	7.2			5 U		10 U	20 U	20 U								
	10/15/92	6.7			5 U		10 U	20 U	20 U								
	01/15/93	7.4			5 U		57	20 U	53								
	04/20/93	7			5 U		10 U	20 U	20 U								
	07/14/93	6.6			5 U		10 U	20 U	20 U								
	10/14/93	7			5 U		10 U	20 U	20 U								
	01/12/94	6.9			5 U		10 U	20 U	20 U								
	04/13/94	6.9			5 U		10 U	20 U	20 U								
	07/20/94	6.9			5 U		10 U	20 U	20 U								
	10/13/94	6.7			5 U		10 U	20 U	20 U								
	01/16/95	6.9			5 U		10 U	20 U	20 U								

CDM Page 16 of 27

2279-111/pti.mdb

01-Jul-04

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-09	01/18/95	6.8		5 U		10 U	20 U	20 U									
	04/19/95	6.9		5 U		10 U	20 U	20 U									
	07/13/95	6.8		5 U		10 U	20 U	20 U									
	10/11/95	6.8		5 U		10 U	20 U	20 U									
	02/01/96	7		5 U		10 U	20 U	20 U									
	04/17/96	7.1		5 U		10 U	20 U	20 U									
	07/17/96	7.2		5 U		10 U		20 U									
	10/09/96	7		5 U		10 U	20 U	20 U									
	01/15/97	7		5 U		10 U	20 U	20 U									
	04/17/97	7.3		5 U		10 U	20 U	20 U									
	07/10/97	7.3		5 U		10 U	20 U	20 U									
	10/16/97	6.6		5 U		49	20 U	20 U									
	01/15/98	6.9		5 U		10 U	20 U	20 U									
	04/23/98	7.3		5 U		10 U	20 U	20 U									
	07/15/98			5 U		10 U	20 U	20 U									
	10/21/98	6.4		7.5		1300	3300 U	340									
	01/15/99	6.7		5 U		2400 U	3300 U	25 U									
	04/15/99	6.7		5 U		640 U	10 U	25 U									
	07/15/99	6.6		10 U		5600 U	5800 U	50 U									
	10/15/99	6.9		5 U		4200 U	4000 U	25 U									
	01/15/00	7		5 U		13900 U	14100 U	25 U									
	04/15/00	6.8		5 U		10 U	10 U	25 U									
	10/15/00	7.3		5 U		14 U	20 U	25 U									
	04/15/01	7		5 U		11 U	4.3 U	25 U									
	07/19/01	7		5 U		85	76	25 U									
	07/19/01 K	7		5 U		82	85	25 U									
	10/18/01	6.9		5 U		1300	1100	25 U									
	10/18/01 K	6.9		5 U		1400	1100	25 U									
	01/17/02	7.1		5 U		160	280	25 U									
	01/17/02 K	7.1		5 U		150	230	25 U									
	04/18/02	7.1		5 U		160	140	25 U									
	04/18/02 K	7.1		5 U		150	140	25 U									
	07/26/02	6.7		5 U		9100	10000	25 U									

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type		Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-09	07/26/02 K	6.7		5 U		9300	10200	25 U									
	10/24/02	6.5		5 U		4500	4300	25 U									
	10/24/02 K	6.5		5 U		4800	4400	25 U									
	01/09/03	6.63		5 U		9600	9500	10 U									
	01/09/03 K	6.65		5 U		9700	9500	10 U									
	04/25/03	7.24		5 U		270	250	10 U									
	04/25/03 K	6.83		5 U		280	260	10 U									
	07/31/03	6.69		5 U		2200	2100	10 U									
	07/31/03 K	6.66		5 U		2200	2200	10 U									
	10/22/03	7.23		10 RL-1,U		13000	13000	20 RL-1,U									
	10/22/03 K	7.26		10 RL-1,Ù		13000	13000	20 RL-1,U									
	01/23/04	6.84		5 U		2400	2800	10 U									
	01/23/04 K	6.85		5 U		2400	2700	10 U									
	04/21/04	6.87		5 U		3400	2900	10 U									
	04/21/04 K	6.96		5 U		4400	4100	10 U									
MW-10	01/15/89	7.8		3 U		29	10 U	9 U									6 U
	04/15/89			10 U		80	50 U	20 U									20 U
	07/15/89	7.3		10 U		110	50 U	20 U									150
	10/15/89			10 U		20 U	50 U	50 U									20 U
	01/15/90	7.7		10 U		10 U	20 U	20 U									20
	04/15/90	7.48		5 U		20 U	20 U	20 U									10 U
	07/15/90	7.49		10 U		10 U	20 U	20 U									30
	10/15/90			10 U 5 U		10 U	20 U	20 U				40 U					80
	01/15/91			5 U		10 U	20 U	20 U				40 U					150
MW-11	01/15/89	7.6		3 U		14 U	10 U	9 U									6 U
	04/15/89			10 U		40	50 U	20 U									20 U
	07/15/89	7.43		10 U		20 U	50 U	130									50
	10/15/89			10 U		20 U	50 U	50 U									20 U
	01/15/90	7.77		10 U		10 U	20 U	20 U									10 U
	04/15/90	7.56		5 U		20 U	20 U	20 U									10 U
	07/15/90	7.62		10 U		10 U	20 U	30									40

CDM Page 18 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Berylllum	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-11	10/15/90			10 U	5 U		10 U	20 U	20 U				40 U					170
	01/15/91				5 U		10 U	20 U	20 U				40 U					69
	04/15/91	7.6			5 U		10 U	20 U	20 U									
	07/15/91	7.4			5 U		10 U	20 U	20 U									
	10/15/91	7.45			5 U		10 U	20 U	20 U									
	04/15/92	7.5			5 U		10 U	20 U	20 U									
	07/15/92	7.2			5 U		16	20 U	87									
	10/15/92	7.3			5 U		11	20 U	20 U									
	01/15/93	7.5			5 U		13	20 U	88									
	04/19/93	7.3			5 U		10 U	20 U	20 U									
	07/12/93	7.2			5 U		10 U	20 U	20 U									
	10/13/93	7.2			5 U		10 U	20 U	20 U									
	01/10/94	7.2			5 U		10 U	20 U	20 U									
	04/12/94	7.4			5 U		10 U	20 U	20 U									
	07/18/94	7.3			5 U		10 U	20 U	20 U									
	10/11/94	7.1			5 U		11	20 U	20 U									
	01/17/95	6.7			5 U		10 U	20 U	20 U									
	04/17/95	7.2			5 U		10 U	20 U	20 U									
	07/11/95	7.1			5 U		10 U	20 U	20 U									
	10/09/95	7.2			5 U		10 U	20 U	20 U									
	01/30/96	6.7			5 U		10 U	20 U	20 U									
	04/16/96	7			5 U		10 U	20 U	23									
	07/15/96	7,1			5 U		10 U		20 U									
	10/08/96	7.1			5 U		10 U	20 U	20 U									
	01/14/97	6.8			5 U		10 U	20 U	29									
	04/16/97	6.9			5 U		10 U	20 U	20 U									
	07/09/97	7.2			5 U		10 U	20 U	150									
	10/15/97	6.7			5 U		10 U	20 U	100									
	01/14/98	7.1			5 U		10 U	20 U	20 U									
	04/22/98	7.2			5 U		10 U	20 U	77									
	07/15/98	7.2			5 U		10 U	20 U	20 U									
	10/20/98	6.9			5 U		10 U	20 U	41									
	01/15/99	6.83			5 U		10 U	10 U	20 U									

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рH	Antimony	Arsenic	Barium	n Beryllium C	admium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-11	04/15/99	6.83					5 U		10 U	10 U	25 U									
	07/15/99	6.9					5 U		10 U	20 U	25 U									
	10/15/99	7					5 U		20 U	57 U	25 U									
	01/15/00	6.9					5 U		10 U	20 U	25 U									
	04/15/00	7					5 U		10 U	10 U	25 U									
	10/15/00	6.8					5 U		10 U	20 U	25 U									
	04/15/01	6.6					5 U		10 U	2 U	25 U									
	07/17/01	6.8					5 U		10 U	2 U	25 U									
	10/18/01	6.7					5 U		10 U	2 U	25 U									
	01/17/02	7.1					5 U		10 U	2 U	25 U									
	04/18/02	6.8					5 U		10 U	2 U	25 U									
	07/26/02	6.7					5 U		10 U	1 U	25 U									
	10/24/02	7.1	10 U	5 U	320	4 U	5 U	10 U	10 U	1 U	25 U	5 U	0.2 U	20 U	10 U	7.8	10 U	5 U	10 U	160
	12/30/02	7.03					5 U		5 U	1 U	10 U									
	04/25/03	7.29					5 U		5 U	1 U	10 U									
	07/31/03	6.73					5 U		5 U	1.2	10 U									
	10/23/03	7.23	10 U	5 U	220	4 U	5 U	10 U	5 U	1 U	10 U	5 U	0.2 U	20 U	10 U	5 U	10 U	5 U	10 U	130
	01/23/04	7.21					5 U		5 U	1 U	10 U									
	04/21/04	7.29					5 U		5 U	1 U	10 U									
MW-12	10/15/90				71		5 U		10 U	20 U	20 U				40 U					20 U
	01/15/91						5 U		10 U	20 U	20 U				40 U					20 U
MW-13D	10/15/90				10 U		5 U		10 U	20 U	20 U				40 U					91
	01/15/91						5 U		10 U	20 U	20 U				40 U					610
MW-13S	10/15/90				10 U		5 U		10 U	2 0 U	20 U				40 U					40
	01/15/91						5 U		14	20 U	20 U				40 U					20 U
	07/14/93	8.8					5 U		10 U	20 U	20 U									
MW-14D	10/15/90				10 U		5 U		10 U	20 U	20 U				40 U					56
	01/15/91						5 U		10 U	20 U	20 U				40 U					22
MW-14S	10/15/90				10 U		18		2200	3200	5300				820					1400

CDM Page 20 of 27 2279-111/pti.mdb 01-Jul-04

C

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-14S	01/15/91			7		940	400	1000				260					380
	04/15/91	7.2		5 U		410	390	150									
	07/15/91	7.3		5 U		310	20 U	110									
	10/15/91	7.4		5 U		230	130	50									
	04/15/92	7.3		5 U		160	130	41									
	07/15/92	7.4		5 U		330	99	560									
	10/15/92	7.4		5 U		540	160	720									
	01/15/93	7.5		5 U		240	56	330									
	04/22/93	7.3		5 U		14	20 U	26									
	07/13/93	7.6		5 U		20	20 U	23									
	10/14/93	7.5		5 U		10 U	20 U	21									
	01/12/94	7.2		5 U		15	20 U	22									
	04/13/94	7.3		5 U		22	20 U	20 U									
	07/20/94	7.4		5 U		16	2 0 U	20 U									
	10/11/94	7.3		5 U		64	35	20 U									
	02/08/95	7.3		5 U		16	20 U	20 U									
	04/18/95	7.4		5 U		10 U	20 U	20 U									
	07/12/95	7.3		5.5		10 U	20 U	20 U									
	10/11/95	7.3		5 U		46	22	20 U									
	02/01/96	7.3		5 U		34	20 U	24									
	04/17/96	7.4		5 U		28	21	20 U									
	07/17/96	7.3		5 U		69		20 U									
	10/08/96	7.1		5 U		82	52	20 U									
	01/15/97	7.2		5 U		31	24	20 U									
	04/16/97	7.3		5.3		32	20 U	20 U									
	07/10/97	7.3		5 U		16	20 U	20 U									
	10/16/97	7.4		5 U		130	100	20 U									
	01/15/98	7.3		5 U		18	20 U	20 U									
	04/23/98	7.7		5 U		18	20 U	23									
	07/15/98			5 U		10 U	20 U	20 U									
	10/21/98	7.3		5 U		44	32 U	27									
	01/15/99	7.11		5 U		10 U	10 U	20 U									
	04/15/99	7.11		5 U		10 U	10 U	25 U									

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-14S	07/15/99	7.4					5 U		38 U	20 U	37 U									-
	10/15/99	6.8					6 ∪		150 U	35 U	44 U									
	01/15/00	7.2					9.4		260 U	110 U	31 U									
	04/15/00	7.5					5 U		10 U	10 U	25 U									
	10/15/00	7.4					5 U		90 U	39 U	87 U									
	04/15/01	7.1					5 U		43 U	57 U	30 U									
	07/19/01	7.1					5 U		25	4.6	25 U									
	10/17/01	7.2					5 U		140	2 U	42									
	01/16/02	7.4					5 U		10 U	2 U	25 U									
	04/17/02	7.2					5 U		43	35	29									
	07/25/02	7.3					5 U		65	17	31		~							
	10/23/02	7	10 U	11	420	4 U	7.4	10 U	420	420	40	5 U	0.2 U	20 U	10 U	5 U	10 U	7.4	10 U	130
	12/30/02	7.09					5 U		14	4.2	42									
	04/24/03	7.24					5 U		20	1 U	29									
	07/30/03	6.86					6.6		150	120	52									
	10/23/03	6.71	10 U	5 U	300	4 U	5 U	10 U	330	990	30	5 U	0.2 U	20 U	16	5 U	10 U	5 U	10 U	98
	01/22/04	6.7					10 RL-3,U		950	440	37									
	04/21/04	7.01					10 RL-1,U		310	330	23									
/IW-15D	10/15/90				36		5 U		10 U	20 U	20 U				40 U					41
	01/15/91						5 U		10 U	20 U	20 U				40 U					1800
	04/15/91	7.3					5 U		10 U	20 U	20 U									
	07/15/91	7.4					5 U		10 U	20 U	20 U									
	10/15/91	7.45					5 U		10	20 U	20 U									
	04/15/92	7.6					5 U		10 U	20 U	20 U									
	07/15/92	7.5					5 U		10 U	20 U	20 U									
	10/15/92	7.4					5 U		10 U	20 U	20 U									
	01/15/93	7.6					5 U		10 U	20 U	20 U									
	04/21/93	7					5.8		10 U	20 U	20 U									
	07/14/93	7.8					5 U		10 U	20 U	25									
	10/14/93	7.5					5 U		1 0 U	20 U	20 U									
	01/12/94	7.4					5 U		10 U	20 U	20 U									
	04/13/94	7.5					5 U		10 U	20 U	20 U									

CDM Page 22 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	pН	Antimony Arsenic	Barium Beryllium Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-15D	07/20/94	7.5		5 U		10 U	20 U	20 U									
	10/12/94	7.5		5 U		10 U	20 U	20 U									
	01/18/95	7.5		5 U		18	20 U	20 U									
	04/19/95	7.5		5 U		10 U	20 U	20 U									
	07/12/95	7.4		5 U		10 U	20 U	20 U									
	10/11/95	7.6		5 U		10 U	20 U	20 U									
	02/01/96	7.6		5 U		10 U	20 U	20 U									
	04/17/96	7.5		5 U		12	20 U	20 U									
	07/17/96	7.6		5 U		10 U		20 U									
	10/09/96	7.6		5 U		10 U	20 U	20 U									
	01/15/97	7.4		5 U		10 U	20 U	20 U									
	04/17/97	7.6		5 U		10 U	20 U	20 U									
	07/10/97	7.6		5 U		10 U	20 U	20 U									
	10/16/97	7.9		5 U		10 U	20 U	20 U									
	01/15/98	7.6		5 U		10 U	20 U	20 U									
	04/23/98	7.9		5 U		10 U	20 U	20 U									
	10/21/98	7.7		5 U		10 U		20 U									
	01/15/99	7.34		5 U		35 U	10 U	25 U									
	04/15/99	7.34		5 U		35 U	10 U	25 U									
	07/15/99	7.5		5 U		10 U	20 U	25 U									
	10/15/99	7.4		5 U		10 U	10 U	25 U									
	01/15/00	8.4		5 U		10 U	20 U	25 U									
	04/15/00	7.5		5 U		13 U	16 U	25 U									
	10/15/00	7.8		5 U		10 U	20 U	25 U									
	04/15/01	7.5		5 U		25 U	14 U	25 U									
	07/19/01	7.3		5 U		13	8.1	25 U									
	10/17/01	7.6		5 U		10 U	2 U	25 U									
	01/16/02	7.6		5 U		10 U	8.1	25 U									
	04/17/02	7.5		5 U		10 U	2 U	25 U									
	07/25/02	7.6		5 U		10 U	4.7	25 U									
	10/22/02	7.5		5 U		10 U	1.6	25 U									
	01/08/03	7.52		5 U		3.1 J	1 U	17									
	04/23/03	7.48		5 U		5 U	1 U	10 U									

Table B-3
Phibro-Tech, Inc.
Historical Groundwater Analytical Results
Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arseni	c Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-15D	07/30/03	7.26			5 U		5 U	0.3 O-09,U	10 U									
	10/21/03	7.72			5 U		5 U	1 U	10 U									
	01/22/04	7.2			5 U		5.6	6.4	10 U									
	04/21/04	7.6			5 U		6.7	7	10 U									
MW-15S	10/15/90			62	5 U		10 U	20 U	20 U				40 U					49
	01/15/91				5 U		10 U	20 U	20 U				40 U					46
	04/15/91	7.1			11		10 U	20 U	20 U									
	07/15/91	7.1			14		10 U	20 U	20 U									
	10/15/91	7.12			20		10	20 U	60									
	04/15/92	7.5			5 U		10 U	20 U	20 U									
	07/15/92	7.2			9.3		39	20 U	270									
	10/15/92	7.2			7.3		10 U	20 U	47									
	01/15/93	7.4			8.5		14	20 U	100									
	04/21/93	6.8			5 U		13	20 U	20 U									
	07/14/93	7.4			5 U		10 U	20 U	20 U									
	10/14/93	7.3			5 U		10 U	40 UG	20 U									
	01/12/94	7.2			5 U		10 U	20 U	20 U									
	04/13/94	7.4			5 U		10 U	20 U	20 U									
	07/20/94	7.4			5 U		10 U	20 U	20 U									
	10/11/94	7.2			5 U		10 U	20 U	20 U									
	01/18/95	7.3			5 U		44	48	20 U									
	04/19/95	7.4			5 U		10 U	20 U	20 U									
	07/12/95	7.4			5 U		10 U	20 U	20 U									
	10/11/95	7.6			5 U		10 U	20 U	20 U									
	02/01/96	7.4			5 U		12	20 U	20 U									
	04/17/96	7.5			5 U		15	20 U	20 U									
	07/17/96	7.6			5 U		14		20 U									
	10/08/96	7.4			5 U		10 U	20 U	20 U									
	01/15/97	7.4			5 U		10 U	20 U	20 U									
	04/17/97	7.6			5 U		10 U	20 U	20 U									
	07/10/97	7.5			5 U		10 U	20 U	20 U									
	10/16/97	7.7			5 U		10 U	20 U	20 U									

CDM Page 24 of 27 2279-111/pti.mdb 01-Jul-04

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Well Number	Sample Sample Date Type	рН	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-15S	01/15/98	7.4			5 U		21	20 U	20 U									
	04/23/98	7.7			5 U		10 U	20 U	20 U									
	07/15/98				5 U		14 U	20 U	20 U									
	10/21/98	7.6			5 U		17	20 U	20 U									
	01/15/99	7.2			5 U		10 U	24 U	20 U									
	04/15/99	7.2			5 U		13 U	10 U	25 U									
	07/15/99	7.6			5 U		10 U	20 U	25 U									
	10/15/99	7.2			5 U		15 U	14 U	25 U									
	01/15/00	7.3			12 U		10 U	20 U	25 U									
	04/15/00	7.2			5 U		10 U	10 U	25 U									
	10/15/00	7.7			· 5U		10 U	20 U	25 U									
	04/15/01	7.4			5 U		10 U	5.3 U	25 U									
	07/19/01	7.2			5 U		10 U	7.4	25 U									
	10/17/01	7.5			5 U		10 U	8.8	25 U									
	01/16/02	7.5			5 U		11	9.1	25 U									
	04/17/02	7.4			5 U		10 U	10	25 U									
	07/24/02	7.4			5 U		10 U	6	25 U									
	10/23/02	7.4			5 U		10 U	3.5	25 U									
	01/08/03	7.22			5.3		4.2 J	4.2	10 U									
	04/24/03	7.19			5 U		6.4	5.9	10 U									
	07/30/03	7.02			5 U		5 U	2.2 Q-09	10 U									
	10/22/03	7.7			5.7		5 U	1 U	10 U									
	01/22/04	7.06			13		5 U	1 U	10 U									
	04/21/04	7.37			7.7		5 U	1 U	10 U									
MW-16	04/15/92	7.2			5 U		10 U	20 U	20 U									20 U
	07/15/92	7.3		•	5 U		27	20 U	350									
	10/15/92	7.1			5 U		11	20 U	150									
	01/15/93	7.2			5 U		10 U	20 U	440									
	04/22/93	6.8			5 U		10 U	20 U	20 U									
	07/14/93	7.1			5.4		10 U	20 U	20 U									
	10/14/93	7.1			5 U		10 U	40 UG	20 U									
	01/12/94	6.8			5 U		10 U	20 U	20 U									

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

	Sample Sample Date Type	рH	Antimony Arsenic	Barium Beryllium	Cadmium	Cobalt	Chromium	Cr+6	Copper	Lead	Mercury	Molyb- denum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-16	04/13/94	6.9			5 U		10 U	20 U	20 U									
	07/20/94	6.8			5 U		10 U	20 U	20 U									
	10/13/94	6.8			5 U		10 U	20 U	20 U									
	01/16/95	6.9			5 U		10 U	20 U	20 U									
	04/19/95	6.9			5 U		10 U	20 U	20 U									
	07/13/95	7			5 U		10 U	20 U	20 U									
	10/11/95	6.8			5 U		10 U	20 U	20 U									
	02/01/96	7			5 U		10 U	20 U	20 U									
	04/17/96	7.1			5 U		10 U	20 U	20 U									
	07/17/96	7.1			5 U		10 U		20 U									
	10/09/96	7			5 U		10 U	20 U	20 U									
	01/15/97	7			5 U		10 U	20 U	20 U									
	04/17/97	7.3			5 U		10 U	20 U	20 U									
	07/10/97	7.3			5 U		10 U	20 U	20 U									
	10/16/97	7.2			5 U		10 U	20 U	20 U									
	01/15/98	7			5 U		10 U	20 U	20 U									
	04/23/98	7.4			5 U		10 U	20 U	23									
	07/15/98				5 U		10 U	20 U	31 U									
	10/21/98	7.1			5 U		10 U	20 U	20 U									
	01/15/99	6.9			5 U		10 U	10 U	20 U									
	04/15/99	6.9			5 U		10 U	10 U	25 U									
	07/15/99	7			5 U		10 U	20 U	25 U									
	10/15/99	6.7			5 U		10 U	10 U	25 U									
	01/15/00	7.2			5 U		10 U	20 U	25 U									
	04/15/00	7			5 U		10 U	10 U	25 U									
	10/15/00	7.3			5 U		10 U	20 U	300 U									
	04/15/01	7.1			5 U		10 U	0.33	25 U									
	07/19/01	7			5 U		10 U	3.1	25 U									
	10/18/01	7			5 U		10 U	2 U	25 U									
	01/17/02	7.2			5 U		110	96	25 U									
	04/18/02	7.1			5 U		12	2 U	25 U									
	07/26/02	7			5 U		10 U	1 U	25 U									
	10/24/02	6.9			5 U		10 U	5.1	25 U									

CDM Page 26 of 27 2279-111/pti.mdb

Table B-3 Phibro-Tech, Inc. Historical Groundwater Analytical Results Metals and pH Analytical Summary

Number	.,,,,		 Barium Beryllium Cadmium	 Chromium				delium			Vanadium	Zinc
MW-16	01/09/03	6.84	5 U	5.7	4.3	10						
	04/24/03	7.12	5 U	5.1	4.1	10 U						
	07/31/03	6.82	5 U	5 U	4	10 U						
	10/22/03	7.34	5 U	5 U	1 U	10 U						
	01/23/04	6.98	5 U	5 U	2.6	10 U						
	04/21/04	7.21	5 U	5 U	1 U	10 U						

Notes:

All concentrations are reported in micrograms per liter (ug/l)

U = Not detected at a concentration greater than the reporting limit shown.

E = Indicates that the reported concentration is above the calibration range for the instrument. Concentration reported is an estimate only.

J = Indicates detected concentration is below analytical calibration curve, and is below the official reporting limit. Concentration reported is an estimate only.

M-HA = Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information

M2 = The matrix spike and/or matrix spike duplicate were below acceptance limits due to sample matrix interference.

O-09 = This sample was received with the EPA recommended holding expired.

RL-1 = Reporting limit elevated due to matrix interference.

RL-3 = Reporting Limit elevated due to interference from other analytes.

Analyte not analyzed or not reported if left blank.

Sample Type:

K = Split sample

Appendix C Del Mar Analytical Laboratory Reports

LABORATORY REPORT

Prepared For: Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04 Received: 04/20/04

Issued: 04/29/04

NELAP #01108CA CA ELAP #1197

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: Holding times were met.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

-	LABORATORY ID	CLIENT ID	MATRIX
	IND1281-01	PTI-TB01-061	Water
	IND1281-02	PTI-MW01D-061	Water
	IND1281-03	PTI-MW01S-061	Water
	IND1281-04	PTI-MW03-061	Water
	IND1281-05	PTI-MW06D-061	Water
-	IND1281-06	PTI-MW06B-061	Water
	IND1281-07	PTI-EB01-061	Water

l Mar Analytical, Irvine

I_ty Mata Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04

Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1281-01 (PTI-TB01-06	1 - Water)							
Reporting Units: ug/l	1 ((2101)							
Benzene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Bromobenzene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Bromochloromethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Bromodichloromethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Bromoform	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Bromomethane	EPA 8260B	4D24002	1.0	ND	· 1	4/24/2004	4/24/2004	
n-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1.	4/24/2004	4/24/2004	
sec-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
tert-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1 .	4/24/2004	4/24/2004	
Carbon tetrachloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Chlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroform	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
4-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromochloromethane	EPA 8260B	4D24002	1.0	ND	. 1	4/24/2004	4/24/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,4-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dichlorodifluoromethane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichloroethane	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D24002		ND	1		4/24/2004	
1,2-Dichloropropane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,3-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1 .	4/24/2004	4/24/2004	
2,2-Dichloropropane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,1-Dichloropropene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Ethylbenzene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Hexachlorobutadiene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Isopropylbenzene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
p-Isopropyltoluene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Methylene chloride	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0643 FAX (702) 798-3620 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		_				_ ′	_	_
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
ample ID: IND1281-01 (PTI-TI	301-061 - Water) - cor	nt.						
Reporting Units: ug/l	,							
Naphthalene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Propylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Styrene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
etrachloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Toluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,3-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1 1,2-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
richloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Hichlorofluoromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,3-Trichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
3,5-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Vinyl chloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
^ Xylene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
,p-Xylenes	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Surrogate: Dibromofluoromethane	(80-120%)			108 %				
Surrogate: Toluene-d8 (80-120%)				111 %				
vrrogate: 4-Bromofluorobenzene	(80-120%)			103 %				

el Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04

Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1281-02 (PTI-MW01D							•	
Reporting Units: ug/l	-001 - Water)							
Benzene	EPA 8260B	4D24002	0.50	0.58	1	4/24/2004	4/24/2004	
Bromobenzene	EPA 8260B	4D24002		ND	1		4/24/2004	
Bromochloromethane	EPA 8260B	4D24002		ND	1		4/24/2004	
Bromodichloromethane	EPA 8260B	4D24002		ND	1		4/24/2004	
Bromoform	EPA 8260B	4D24002		ND	1		4/24/2004	
Bromomethane	EPA 8260B	4D24002		ND	1		4/24/2004	
n-Butylbenzene	EPA 8260B	4D24002		ND	1		4/24/2004	
sec-Butylbenzene	EPA 8260B	4D24002		ND	1		4/24/2004	
tert-Butylbenzene	EPA 8260B	4D24002		ND	1		4/24/2004	
Carbon tetrachloride	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Chlorobenzene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Chloroethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Chloroform	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Chloromethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
2-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
4-Chlorotoluene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Dibromochloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,4-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dichlorodifluoromethane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichloroethane	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichloropropane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,3-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,2-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloropropene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Ethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Hexachlorobutadiene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Isopropylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
p-Isopropyltoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Methylene chloride	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04

Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

ample ID: IND1281-02 (PTI-MW01D-061 - Water) - cont. Reporting Units: ug/I Naphthalene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Propylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Styrene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 10ue EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1/2 1/2 1 1 4/24/2004 4/24/2004 <th></th> <th></th> <th>-</th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th>			-		•				
Naphthalene	Data Qualifiers				_			Method	Analyte
Reporting Units: ug/I Naphthalene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Propylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Styrene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 etrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004		-					cont.	-061 - Water) -	•
Naphthalene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Propylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Styrene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Toluene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 *2,3-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 *1,2-Trichloroethane EPA 826							cont.	ooi water,	
Propylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Styrene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 etrachloroethene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Toluene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 10 etrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2-Trichloroethane EPA 8260B		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	
Styrene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 etrachloroethene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Toluene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 * 2,3-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Wichloroethene EP		4/24/2004	4/24/2004	1		1.0	4D24002	EPA 8260B	-
1,1,1,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 etrachloroethene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Toluene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 * 2,3-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 richloroethene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 **Chloroethene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2		4/24/2004	4/24/2004	1		1.0	4D24002	EPA 8260B	11.2.
1,2,2-Tetrachloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 etrachloroethene EPA 8260B 4D24002 1.0 3.0 1 4/24/2004 4/24/2004 Toluene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 **ichlorofluoromethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 **ichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 <td></td> <td>4/24/2004</td> <td>4/24/2004</td> <td>1</td> <td>ND</td> <td></td> <td>4D24002</td> <td>EPA 8260B</td> <td>-</td>		4/24/2004	4/24/2004	1	ND		4D24002	EPA 8260B	-
Toluene		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	
' 2,3-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 richloroethene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 #ichlorofluoromethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride<		4/24/2004	4/24/2004	1	3.0	1.0	4D24002	EPA 8260B	etrachloroethene
2,4-Trichlorobenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1.1,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 richloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 richlorofluoromethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	Toluene
1,1,1-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1.1,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 richloroethene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 #richlorofluoromethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	2,3-Trichlorobenzene
1.1,2-Trichloroethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 richloroethene EPA 8260B 4D24002 1.0 6.9 1 4/24/2004 4/24/2004 #ichlorofluoromethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	2,4-Trichlorobenzene
richloroethene EPA 8260B 4D24002 1.0 6.9 1 4/24/2004 4/24/2004 #ichlorofluoromethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	1,1,1-Trichloroethane
#richlorofluoromethane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 1,2,3-Trichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	1.1,2-Trichloroethane
1,2,3-Trichloropropane EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	6.9	1.0	4D24002	EPA 8260B	richloroethene
2,4-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 3,5-Trimethylbenzene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004 Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	#ichlorofluoromethane
### 3,5-Trimethylbenzene EPA 8260B		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	1,2,3-Trichloropropane
Vinyl chloride EPA 8260B 4D24002 0.50 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	2,4-Trimethylbenzene
		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	3,5-Trimethylbenzene
		4/24/2004	4/24/2004	1	ND	0.50	4D24002	EPA 8260B	Vinyl chloride
^ Xylene EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	^ Xylene
p-Xylenes EPA 8260B 4D24002 1.0 ND 1 4/24/2004 4/24/2004		4/24/2004	4/24/2004	1	ND	1.0	4D24002	EPA 8260B	,p-Xylenes
Surrogate: Dibromofluoromethane (80-120%) 104 %					104 %			20%)	Surrogate: Dibromofluoromethane (8
Surrogate: Toluene-d8 (80-120%) 110 %					110 %				
rrogate: 4-Bromofluorobenzene (80-120%)					102 %			20%)	rrogate: 4-Bromofluorobenzene (80

1 I Mar Analytical, Irvine

Ltty Mata

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04

Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

	35.41.3		Reporting		Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IND1281-03 (PTI-MW01S Reporting Units: ug/l	-061 - Water)							
Benzene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Bromobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromochloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromodichloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromoform	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
n-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
sec-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
tert-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Carbon tetrachloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Chlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroform	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
4-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromochloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,4-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dichlorodifluoromethane	. EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethane	EPA 8260B	4D24002	1.0	1.3	1	4/24/2004	4/24/2004	
1,2-Dichloroethane	EPA 8260B	4D24002	0.50	0.67	1	4/24/2004	4/24/2004	
1,1-Dichloroethene	EPA 8260B	4D24002	1.0	1.0	1	4/24/2004	4/24/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D24002	1.0	ND	.1	4/24/2004	4/24/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,2-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloropropene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Ethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Hexachlorobutadiene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Isopropylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
p-Isopropyltoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Methylene chloride	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04

Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Report Number: IND1281

			•	`		,		
Analyte	Method	I Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
ample ID: IND1281-03 (PTI-MW)	1S-061 - Water) -	cont.						
Reporting Units: ug/l								
Naphthalene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Propylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Styrene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
I,2,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
etrachloroethene	EPA 8260B	4D24002	1.0	7.3	1	4/24/2004	4/24/2004	
Toluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,3-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
¹ 1,2-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
richloroethene	EPA 8260B	4D24002	1.0	13	1	4/24/2004	4/24/2004	
Trichlorofluoromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,3-Trichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
3,5-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Vinyl chloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Xylene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
p-Xylenes	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Surrogate: Dibromofluoromethane (8	0-120%)			106 %				
Surrogate: Toluene-d8 (80-120%)				111 %				
rrogate: 4-Bromofluorobenzene (80	0-120%)			101 %				
-								

el Mar Analytical, Irvine

mtty Mata

Project Manager

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			Reporting	`	Dilution	,	Date	Data
Analyte	Method	Batch	Ĺimit	Result		Extracted	Analyzed	Qualifiers
Sample ID: IND1281-04 (PTI-MW	/03-061 - Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4D24002	0.50	1.2	1	4/24/2004	4/24/2004	
Bromobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromochloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromodichloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromoform	EPA 8260B	4D24002	1.0	ND	1 ·	4/24/2004	4/24/2004	
Bromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
n-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
sec-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
tert-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Carbon tetrachloride	EPA 8260B	4D24002	0.50	49	1	4/24/2004	4/24/2004	
Chlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroform	EPA 8260B	4D24002	1.0	32	1	4/24/2004	4/24/2004	
Chloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
4-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromochloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,4-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dichlorodifluoromethane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethane	EPA 8260B	4D24002	1.0	29	1	4/24/2004	4/24/2004	
1,2-Dichloroethane	EPA 8260B	4D24002	0.50	40	1 .	4/24/2004	4/24/2004	
1,1-Dichloroethene	EPA 8260B	4D24002	1.0	31	1	4/24/2004	4/24/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D24002	1.0	9.6	1	4/24/2004	4/24/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,2-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloropropene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1		4/24/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1		4/24/2004	
Ethylbenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Hexachlorobutadiene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Isopropylbenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
p-Isopropyltoluene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Methylene chloride	EPA 8260B	4D24002	5.0	ND	1		4/24/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04 Number: IND1281 Received: 04/20/04

Report Number: IND1281

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

-		, F	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result		Extracted	Analyzed	Qualifiers
_ample ID: IND1281-04 (PTI-MW03-0	61 - Water) - co	ont.						
Reporting Units: ug/l								
Naphthalene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Propylbenzene	EPA 8260B	4D24002	1.0	ND	. 1	4/24/2004	4/24/2004	
Styrene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
etrachloroethene	EPA 8260B	4D24002	1.0	5.1	1	4/24/2004	4/24/2004	
Toluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,3-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
_2,4-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1.1,2-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
ichloroethene	EPA 8260B	4D24002	1.0	180	1	4/24/2004	4/24/2004	
Fichlorofluoromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,3-Trichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
3,5-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Vinyl chloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
c Xylene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1 p-Xylenes	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Surrogate: Dibromofluoromethane (80-1.	20%)			108 %				
Surrogate: Toluene-d8 (80-120%)				111 %				
rrogate: 4-Bromofluorobenzene (80-12	20%)			102 %				

I | Mar Analytical, Irvine

First Mata Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04

Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1281-05 (PTI-MW06I Reporting Units: ug/l	0-061 - Water)							
Benzene	EPA 8260B	4D24002	2 0.50	ND	1	4/24/2004	4/24/2004	
Bromobenzene	EPA 8260B	4D24002		ND	î		4/24/2004	
Bromochloromethane	EPA 8260B	4D24002		ND	1		4/24/2004	
Bromodichloromethane	EPA 8260B	4D24002		ND	1		4/24/2004	
Bromoform	EPA 8260B	4D24002		ND	1		4/24/2004	
Bromomethane	EPA 8260B	4D24002		ND	1		4/24/2004	
n-Butylbenzene	EPA 8260B	4D24002		ND	1		4/24/2004	
sec-Butylbenzene	EPA 8260B	4D24002		ND	1		4/24/2004	
tert-Butylbenzene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Carbon tetrachloride	EPA 8260B	4D24002		ND	1		4/24/2004	
Chlorobenzene	EPA 8260B	4D24002		ND	1		4/24/2004	
Chloroethane	EPA 8260B	4D24002		ND	1		4/24/2004	
Chloroform	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Chloromethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
2-Chlorotoluene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
4-Chlorotoluene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Dibromochloromethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D24002	2 5.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Dibromomethane	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichlorobenzene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichlorobenzene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
1,4-Dichlorobenzene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Dichlorodifluoromethane	EPA 8260B	4D24002	2 5.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethane	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichloroethane	EPA 8260B	4D24002	2 0.50	ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D24002	2. 1.0	ND	1	4/24/2004	4/24/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichloropropane	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichloropropane	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
2,2-Dichloropropane	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
1,1-Dichloropropene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D24002	2 0.50	ND	1	4/24/2004	4/24/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D24002	2 0.50	ND	1	4/24/2004	4/24/2004	
Ethylbenzene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Hexachlorobutadiene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Isopropylbenzene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
p-Isopropyltoluene	EPA 8260B	4D24002	2 1.0	ND	1	4/24/2004	4/24/2004	
Methylene chloride	EPA 8260B	4D24002	2 5.0	ND	1	4/24/2004	4/24/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04 Received: 04/20/04

Report Number: IND1281

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	l Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
ample ID: IND1281-05 (PTI-M	W06D-061 - Water) -	cont.						
Reporting Units: ug/l	,							
Maphthalene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
-Propylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Styrene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
,1,2,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
T etrachloroethene	EPA 8260B	4D24002	1.0	6.1	1	4/24/2004	4/24/2004	
Toluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,3-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
¹ 1,2-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
richloroethene	EPA 8260B	4D24002	1.0	16	1	4/24/2004	4/24/2004	
Trichlorofluoromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,3-Trichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
3,5-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Vinyl chloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Xylene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
,p-Xylenes	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Surrogate: Dibromofluoromethane	e (80-120%)			110 %				
Surrogate: Toluene-d8 (80-120%)				112 %				
ırrogate: 4-Bromofluorobenzene				103 %				
Name of the last o								

el Mar Analytical, Irvine

atty Mata

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (999) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution	Date Extracted	Date	Data Qualifiers
•		Daten	Limit	Kesuit	Factor	Extracteu	Alialyzeu	Quantiers
Sample ID: IND1281-06 (PTI-MW06B-Reporting Units: ug/l	-061 - Water)							
Benzene	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Bromobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromochloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromodichloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromoform	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Bromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
n-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
sec-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
tert-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Carbon tetrachloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Chlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroform	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
4-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromochloromethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Dibromomethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,3-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,4-Dichlorobenzene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Dichlorodifluoromethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethane	EPA 8260B	4D24002		1.8	1	4/24/2004	4/24/2004	
1,2-Dichloroethane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,1-Dichloroethene	EPA 8260B	4D24002		2.1	1	4/24/2004	4/24/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D24002		ND	1		4/24/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D24002		ND	1		4/24/2004	
1,2-Dichloropropane	EPA 8260B	4D24002		ND	1		4/24/2004	
1,3-Dichloropropane	EPA 8260B	4D24002		ND	1		4/24/2004	
2,2-Dichloropropane	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
1,1-Dichloropropene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D24002		ND	1		4/24/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D24002		ND	1		4/24/2004	
Ethylbenzene	EPA 8260B	4D24002		ND	1	4/24/2004	4/24/2004	
Hexachlorobutadiene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Isopropylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
p-Isopropyltoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Methylene chloride	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04 Received: 04/20/04

Report Number: IND1281

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

_			•	`		,		
Analyte	Method	I Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
mample ID: IND1281-06 (PTI-M	W06B-061 - Water) -	cont.						
Reporting Units: ug/l	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
``aphthalene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Propylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Styrene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1.1,1,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1 .	4/24/2004	4/24/2004	
T etrachloroethene	EPA 8260B	4D24002	1.0	21	1	4/24/2004	4/24/2004	
Toluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,3-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
¹ 1,2-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
richloroethene	EPA 8260B	4D24002	1.0	15	1	4/24/2004	4/24/2004	
Trichlorofluoromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,3-Trichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
3,5-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Vinyl chloride	EPA 8260B	4D24002	0.50	ND	1.	4/24/2004	4/24/2004	
Xylene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
,p-Xylenes	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Surrogate: Dibromofluoromethane	e (80-120%)			110 %				
Surrogate: Toluene-d8 (80-120%)				112 %				
ırrogate: 4-Bromofluorobenzene	(80-120%)			100 %				
1004								

el Mar Analytical, Irvine

atty Mata

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

	MITTEL ONG		•	•		. 1	ъ.	.
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1281-07 (PTI-EB01-	-061 - Water)							
Reporting Units: ug/l					_			
Benzene	EPA 8260B	4D24002	0.50	ND	1		4/24/2004	
Bromobenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Bromochloromethane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Bromodichloromethane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Bromoform	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Bromomethane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
n-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
sec-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
tert-Butylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Carbon tetrachloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	
Chlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloroform	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Chloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
4-Chlorotoluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromochloromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Dibromomethane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
1,2-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
1,3-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
1,4-Dichlorobenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Dichlorodifluoromethane	EPA 8260B	4D24002	5.0	ND	1		4/24/2004	
1,1-Dichloroethane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
1,2-Dichloroethane	EPA 8260B	4D24002	0.50	ND	1		4/24/2004	
1,1-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
1,2-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
1,3-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
2,2-Dichloropropane	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
1,1-Dichloropropene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D24002	0.50	ND	1		4/24/2004	
trans-1,3-Dichloropropene	EPA 8260B				1			
• • •		4D24002	0.50	ND	1		4/24/2004	
Ethylbenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Hexachlorobutadiene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
Isopropylbenzene	EPA 8260B	4D24002	1.0	ND	1		4/24/2004	
p-Isopropyltoluene	EPA 8260B	4D24002	1.0	ND	1 .		4/24/2004	
Methylene chloride	EPA 8260B	4D24002	5.0	ND	1	4/24/2004	4/24/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Project ID: PhibroTech, 2279-Apr 2004

Irvine, CA 92612 Attention: Sharon Wallin

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
ample ID: IND1281-07 (PT	I-EB01-061 - Water) - con	t.						
Reporting Units: ug/l								
⁻ Vaphthalene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
_i-Propylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Styrene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
,1,2,2-Tetrachloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Tetrachloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Toluene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
,2,3-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
2,4-Trichlorobenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,1-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,1,2-Trichloroethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
richloroethene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Trichlorofluoromethane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
1,2,3-Trichloropropane	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
,2,4-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	•
,3,5-Trimethylbenzene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
Vinyl chloride	EPA 8260B	4D24002	0.50	ND	1	4/24/2004	4/24/2004	3
-Xylene	EPA 8260B	4D24002	1.0	ND	1	4/24/2004	4/24/2004	
_n,p-Xylenes	EPA 8260B	4D24002	1.0	ND .	1	4/24/2004	4/24/2004	
Surrogate: Dibromofluorometa	hane (80-120%)			111 %				
Surrogate: Toluene-d8 (80-12)				110 %				
'urrogate: 4-Bromofluoroben:	•			100 %				

Del Mar Analytical, Irvine

Camp, Dresser & McKee

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

DISSOLVED METALS

			Reporting		Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IND1281-02 (PTI-MW01 Reporting Units: mg/l	D-061 - Water)							•
Cadmium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Chromium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Copper	EPA 6010B-Diss	4D22075	0.010	0.041	1	4/22/2004	4/23/2004	
Sample ID: IND1281-03 (PTI-MW01 Reporting Units: mg/l	S-061 - Water)							
Cadmium	EPA 6010B-Diss	4D22075	0.0050	ND	. 1	4/22/2004	4/23/2004	'
Chromium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Copper	EPA 6010B-Diss	4D22075	0.010	ND	1	4/22/2004	4/23/2004	
Sample ID: IND1281-04 (PTI-MW03 Reporting Units: mg/l	-061 - Water)							
Cadmium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Chromium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Copper	EPA 6010B-Diss	4D22075	0.010	ND	1	4/22/2004	4/23/2004	
Sample ID: IND1281-05 (PTI-MW06 Reporting Units: mg/l	D-061 - Water)							
Cadmium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Chromium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Copper	EPA 6010B-Diss	4D22075	0.010	ND	1	4/22/2004	4/23/2004	
Sample ID: IND1281-06 (PTI-MW06 Reporting Units: mg/l	B-061 - Water)							
Cadmium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Chromium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Copper	EPA 6010B-Diss	4D22075	0.010	ND	1	4/22/2004	4/23/2004	
Sample ID: IND1281-07 (PTI-EB01-0 Reporting Units: mg/l	061 - Water)							
Cadmium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Chromium	EPA 6010B-Diss	4D22075	0.0050	ND	1	4/22/2004	4/23/2004	
Copper	EPA 6010B-Diss	4D22075	0.010	ND	1	4/22/2004	4/23/2004	

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

		INOR	GANICS	,		•		
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
ample ID: IND1281-02 (PTI-MW01D Reporting Units: mg/l	9-061 - Water)							
Chromium VI	EPA 7199	4D20097	0.0010	ND	1	4/20/2004	4/20/2004	
ample ID: IND1281-02 (PTI-MW01D Reporting Units: pH Units	9-061 - Water)							
Нα	EPA 150.1	4D21063	NA	7.23	1	4/21/2004	4/21/2004	
ample ID: IND1281-03 (PTI-MW01S Reporting Units: mg/l	-061 - Water)							
Chromium VI	EPA 7199	4D20097	0.0010	ND	1	4/20/2004	4/20/2004	
ample ID: IND1281-03 (PTI-MW01S Reporting Units: pH Units	-061 - Water)							
pН	EPA 150.1	4D21063	NA	7.11	1	4/21/2004	4/21/2004	
ample ID: IND1281-04 (PTI-MW03-0 Reporting Units: mg/l)61 - Water)							
Chromium VI	EPA 7199	4D20097	0.0010	ND	1	4/20/2004	4/20/2004	
ample ID: IND1281-04 (PTI-MW03-0 Reporting Units: pH Units	•							
pН	EPA 150.1	4D21063	NA	7.24	1	4/21/2004	4/21/2004	
ample ID: IND1281-05 (PTI-MW06D Reporting Units: mg/l	-061 - Water)							
Chromium VI	EPA 7199	4D20097	0.0010	0.0032	1	4/20/2004	4/20/2004	
ample ID: IND1281-05 (PTI-MW06D Reporting Units: pH Units	•							
pH	EPA 150.1	4D21063	NA	7.56	1	4/21/2004	4/21/2004	
ample ID: IND1281-06 (PTI-MW06B Reporting Units: mg/l	ŕ							
Chromium VI	EPA 7199	4D20097	0.0010	0.0031	1	4/20/2004	4/20/2004	
ample ID: IND1281-06 (PTI-MW06B	-061 - Water)			4				
Reporting Units: pH Units pH	EPA 150.1	4D21063	NA	7.40	1	4/21/2004	4/21/2004	

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04

Received: 04/20/04

Report Number: IND1281

INORGANICS

		HIOK	GAINICS					
Analyte	Method	Batch	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1281-07 (PTI-EB01-061 Reporting Units: mg/l	- Water)							
Chromium VI	EPA 7199	4D20097	0.0010	ND	1	4/20/2004	4/20/2004	
Sample ID: IND1281-07 (PTI-EB01-061 Reporting Units: pH Units	- Water)							
рН	EPA 150.1	4D21063	NA	6.22	1	4/21/2004	4/21/2004	

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04 Received: 04/20/04

Report Number: IND1281

SHORT HOLD TIME DETAIL REPORT

** * * * ***	TD / //DI	TS / //D*	TO 4 100°	TD / ////
				Date/Time Analyzed
• •	•	Acceived	DAN Beted	maryzea
1-02) - Water		0.100.000.1.6	0.4/0.4/0.004.05.00	0.4/0.4/0.004.00.00
l	04/20/2004 11:05	04/20/2004 16:20	04/21/2004 07:00	04/21/2004 09:30
1	04/20/2004 11:05	04/20/2004 16:20	04/20/2004 19:15	04/20/2004 20:10
1-03) - Water				
1	04/20/2004 12:40	04/20/2004 16:20	04/21/2004 07:00	04/21/2004 09:30
1	04/20/2004 12:40	04/20/2004 16:20	04/20/2004 19:15	04/20/2004 20:19
04) - Water				
1	04/20/2004 13:30	04/20/2004 16:20	04/21/2004 07:00	04/21/2004 09:30
1	04/20/2004 13:30	04/20/2004 16:20	04/20/2004 19:15	04/20/2004 20:29
1-05) - Water				
1	04/20/2004 14:15	04/20/2004 16:20	04/21/2004 07:00	04/21/2004 09:30
1	04/20/2004 14:15	04/20/2004 16:20	04/20/2004 19:15	04/20/2004 20:38
1-06) - Water				
1	04/20/2004 14:50	04/20/2004 16:20	04/21/2004 07:00	04/21/2004 09:30
1	04/20/2004 14:50	04/20/2004 16:20	04/20/2004 19:15	04/20/2004 21:26
7) - Water				
. 1	04/20/2004 14:05	04/20/2004 16:20	04/21/2004 07:00	04/21/2004 09:30
1	04/20/2004 14:05	04/20/2004 16:20	04/20/2004 19:15	04/20/2004 21:36
	1 1-03) - Water 1 104) - Water 1 1-05) - Water 1 1-06) - Water 1	(in days) Sampled 1-02) - Water 1 04/20/2004 11:05 1 04/20/2004 11:05 1-03) - Water 1 04/20/2004 12:40 1 04/20/2004 12:40 04) - Water 1 04/20/2004 13:30 1 04/20/2004 13:30 1-05) - Water 1 04/20/2004 14:15 1 04/20/2004 14:15 1 04/20/2004 14:50 1 04/20/2004 14:50 7) - Water 1 04/20/2004 14:50 7) - Water 1 04/20/2004 14:50	(in days) Sampled Received 1-02) - Water 1 04/20/2004 11:05 04/20/2004 16:20 1 04/20/2004 11:05 04/20/2004 16:20 1-03) - Water 1 04/20/2004 12:40 04/20/2004 16:20 1 04/20/2004 12:40 04/20/2004 16:20 04) - Water 1 04/20/2004 13:30 04/20/2004 16:20 1 04/20/2004 13:30 04/20/2004 16:20 1 04/20/2004 13:30 04/20/2004 16:20 1-05) - Water 1 04/20/2004 14:15 04/20/2004 16:20 1-06) - Water 1 04/20/2004 14:15 04/20/2004 16:20 1-06) - Water 1 04/20/2004 14:50 04/20/2004 16:20 1 04/20/2004 14:50 04/20/2004 16:20 7) - Water 1 04/20/2004 14:50 04/20/2004 16:20 7) - Water 1 04/20/2004 14:50 04/20/2004 16:20	(in days) Sampled Received Extracted 1-02) - Water 1 04/20/2004 11:05 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 11:05 04/20/2004 16:20 04/20/2004 19:15 1-03) - Water 1 04/20/2004 12:40 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 12:40 04/20/2004 16:20 04/20/2004 19:15 104/20/2004 13:30 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 13:30 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 13:30 04/20/2004 16:20 04/20/2004 19:15 1-05) - Water 1 04/20/2004 14:15 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:15 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:15 04/20/2004 16:20 04/20/2004 19:15 1-06) - Water 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00 1 04/20/2004 14:50 04/20/2004 16:20 04/21/2004 07:00

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04

Report Number: IND1281

Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers	
Batch: 4D24002 Extracted: 04/2		23,,,,,,	0	20,01	1110	, , , ,				•	
Batch: 4D24002 Extracted: 04/2	24/04										
Blank Analyzed: 04/24/04 (4D2	4002-BLK1)										
Benzene	ND	0.50	ug/l								
Bromobenzene	ND	1.0	ug/l								
Bromochloromethane	ND	1.0	ug/l								
Bromodichloromethane	ND	1.0	ug/l								
Bromoform	ND	1.0	ug/l								
Bromomethane	ND	1.0	ug/l								
n-Butylbenzene	ND	1.0	ug/l								
sec-Butylbenzene	ND	1.0	ug/l								
tert-Butylbenzene	ND	1.0	ug/l								
Carbon tetrachloride	ND	0.50	ug/l								
Chlorobenzene	ND	1.0	ug/l								
Chloroethane	ND	1.0	ug/l								
Chloroform	ND	1.0	ug/l								
Chloromethane	ND	1.0	ug/l								
2-Chlorotoluene	ND	1.0	ug/l								
4-Chlorotoluene	ND	1.0	ug/l								
Dibromochloromethane	ND	1.0	ug/l								
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l								
Dibromomethane	ND	1.0	ug/l								
1,2-Dichlorobenzene	ND	1.0	ug/l								
1,3-Dichlorobenzene	ND	1.0	ug/l								
1,4-Dichlorobenzene	ND	1.0	ug/l								
Dichlorodifluoromethane	ND	5.0	ug/l								
1,1-Dichloroethane	ND	1.0	ug/l								
1,2-Dichloroethane	ND	0.50	ug/l								
1,1-Dichloroethene	ND	1.0	ug/l								
cis-1,2-Dichloroethene	ND	1.0	ug/l								
trans-1,2-Dichloroethene	ND	1.0	ug/l								
1,2-Dichloropropane	ND	1.0	ug/l								
1,3-Dichloropropane	ND	1.0	ug/l								
2,2-Dichloropropane	ND	1.0	ug/l ug/l								
1,1-Dichloropropene	ND	1.0	ug/I ug/I								
cis-1,3-Dichloropropene	ND	0.50	ug/l ug/l								
	ND	0.50									
trans-1,3-Dichloropropene	ND	0.30	ug/l								
Del Mar Analytical, Irvine											

Patty Mata

Camp, Dresser & McKee

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04

Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D24002 Extracted: 04/2	4/04									
lank Analyzed: 04/24/04 (4D24	002-BLK1)									
Ethylbenzene	ND	1.0	ug/l							
Hexachlorobutadiene	ND	1.0	ug/l							
opropylbenzene	ND	1.0	ug/l							
Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
`'aphthalene	ND	1.0	ug/l							
Propylbenzene	ND	1.0	ug/l							
Styrene	ND	1.0	ug/l							
1.1,1,2-Tetrachloroethane	ND	1.0	ug/l							
1,2,2-Tetrachloroethane	ND	1.0	ug/l							
#trachloroethene	ND	1.0	ug/l							
Toluene	ND	1.0	ug/l							
2,3-Trichlorobenzene	ND	1.0	ug/l							
2,4-Trichlorobenzene	ND	1.0	ug/l							
1,1,1-Trichloroethane	ND	1.0	ug/l							
¹ 1,2-Trichloroethane	ND	1.0	ug/l	,						
ichloroethene	ND	1.0	ug/l							
Trichlorofluoromethane	ND	1.0	ug/l							
1,2,3-Trichloropropane	ND	1.0	ug/l							
2,4-Trimethylbenzene	ND	1.0	ug/l							
,5-Trimethylbenzene	ND	1.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylene	ND	1.0	ug/l							
p-Xylenes	ND	1.0	ug/l							
Surrogate: Dibromofluoromethane	26.8		ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
rogate: 4-Bromofluorobenzene	25.4		ug/l	25.0		102	80-120			
- V			_							

I el Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC	RPD	RPD Limit	Data Qualifiers	0
-		2		Liever	, vites	23111110	III D	Zimic	Quantities	•
Batch: 4D24002 Extracted: 04	/24/04									
LCS Analyzed: 04/24/04 (4D24	4002-BS1)									
Benzene	23.0	0.50	ug/l	25.0	92	70-120				•
Bromobenzene	24.6	1.0	ug/l	25.0	98	80-120				14
Bromochloromethane	24.4	1.0	ug/l	25.0	98	65-135				
Bromodichloromethane	26.0	1.0	ug/l	25.0	104	70-140				Ì
Bromoform	26.5	1.0	ug/l	25.0	106	50-135				
Bromomethane	27.9	1.0	ug/l	25.0	112	60-140				
n-Butylbenzene	23.5	1.0	ug/l	25.0	94	75-130				ŧ
sec-Butylbenzene	23.2	1.0	ug/l	25.0	93	75-125				
tert-Butylbenzene	23.6	1.0	ug/l	25.0	94	75-125				
Carbon tetrachloride	27.8	0.50	ug/l	25.0	111	70-140				
Chlorobenzene	24.2	1.0	ug/l	25.0	97	80-125				•
Chloroethane	20.9	1.0	ug/l	25.0	84	60-145				
Chloroform	23.7	1.0	ug/l	25.0	95	70-130				
Chloromethane	18.5	1.0	ug/l	25.0	74	40-145				ŧ
2-Chlorotoluene	22.7	1.0	ug/l	25.0	91	75-125				
4-Chlorotoluene	23.2	1.0	ug/l	25.0	93	75-125				- 5
Dibromochloromethane	25.5	1.0	ug/l	25.0	102	65-145				
1,2-Dibromo-3-chloropropane	24.9	5.0	ug/l	25.0	100	50-130				•
1,2-Dibromoethane (EDB)	26.0	1.0	ug/l	25.0	104	70-125				
Dibromomethane	26.5	1.0	ug/l	25.0	106	70-130				
1,2-Dichlorobenzene	25.8	1.0	ug/l	25.0	103	75-120				•
1,3-Dichlorobenzene	24.8	1.0	ug/l	25.0	99	75-120				
1,4-Dichlorobenzene	25.3	1.0	ug/l	25.0	101	80-120				
Dichlorodifluoromethane	27.4	5.0	ug/l	25.0	110	10-160				•
1,1-Dichloroethane	21.0	1.0	ug/l	25.0	84	70-135				
1,2-Dichloroethane	23.8	0.50	ug/l	25.0	95	60-150				
1,1-Dichloroethene	23.7	1.0	ug/l	25.0	95	75-140				4
cis-1,2-Dichloroethene	22.5	1.0	ug/l	25.0	90	65-125				•
trans-1,2-Dichloroethene	23.5	1.0	ug/l	25.0	94	65-130				
1,2-Dichloropropane	21.6	1.0	ug/l	25.0	86	65-120				
1,3-Dichloropropane	24.5	1.0	ug/l	25.0	98	70-130				
2,2-Dichloropropane	22.9	1.0	ug/l	25.0	92	70-150				
1,1-Dichloropropene	23.8	1.0	ug/l	25.0	95	75-130				
cis-1,3-Dichloropropene	24.4	0.50	ug/l	25.0	98	70-130				
trans-1,3-Dichloropropene	25.0	0.50	ug/l	25.0	100	75-135				•
	25.0	V.JV	u ₅ /1	23.0	100	15-155				

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D24002 Extracted: 04/2	24/04									
CS Analyzed: 04/24/04 (4D240	002-BS1)									
Ethylbenzene	22.9	1.0	ug/l	25.0		92	80-120			
Hexachlorobutadiene	26.6	1.0	ug/l	25.0		106	65-140			
opropylbenzene	23.4	1.0	ug/l	25.0		94	70-125			
Isopropyltoluene	23.0	1.0	ug/l	25.0		92	75-125			
Methylene chloride	25.0	5.0	ug/l	25.0		100	60-135			
aphthalene	25.8	1.0	ug/l	25.0		103	50-145			
Propylbenzene	23.3	1.0	ug/l	25.0		.93	75-130			
Styrene	23.5	1.0	ug/l	25.0		94	80-135			
1.1,1,2-Tetrachloroethane	25.9	1.0	ug/l	25.0		104	70-145			
1,2,2-Tetrachloroethane	26.1	1.0	ug/l	25.0		104	60-135			
**trachloroethene	25.8	1.0	ug/l	25.0		103	75-125			
Toluene	22.4	1.0	ug/l	25.0		90	70-120			
2,3-Trichlorobenzene	27.5	1.0	ug/l	25.0		110	65-135			
2,4-Trichlorobenzene	27.5	1.0	ug/l	25.0		110	70-140			
1,1,1-Trichloroethane	24.1	1.0	ug/l	25.0		96	75-140			
¹ 1,2-Trichloroethane	25.6	1.0	ug/l	25.0		102	65-125			
ichloroethene	25.0	1.0	ug/l	25.0		100	75-120			
Trichlorofluoromethane	24.6	1.0	ug/l	25.0		98	60-145			
1,2,3-Trichloropropane	24.9	1.0	ug/l	25.0		100	60-130			
?,4-Trimethylbenzene	22.4	1.0	ug/l	25.0		90	75-125			
,5-Trimethylbenzene	22.8	1.0	ug/l	25.0		91	75-125			
Vinyl chloride	23.2	0.50	ug/l	25.0	•	93	50-125			
Xylene	22.8	1.0	ug/l	25.0		91	75-125			
p-Xylenes	45.4	1.0	ug/l	50.0		91	70-120			
Surrogate: Dibromofluoromethane	26.6		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
. rrogate: 4-Bromofluorobenzene	25.5		ug/l	25.0		102	80-120			

I el Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D24002 Extracted: 04/2	4/04									
Matrix Spike Analyzed: 04/24/04	(4D24002-M	S1)			Source:	IND1281	-03			
Benzene	22.1	0.50	ug/l	25.0	ND	88	70-120			
Bromobenzene	23.9	1.0	ug/l	25.0	ND	96	60-135			
Bromochloromethane	22.6	1.0	ug/l	25.0	ND	90	60-140			
Bromodichloromethane	25.0	1.0	ug/l	25.0	ND	100	70-140			
Bromoform	26.4	1.0	ug/l	25.0	ND	106	50-135			
Bromomethane	25.2	1.0	ug/l	25.0	ND	101	50-140			
n-Butylbenzene	23.3	1.0	ug/l	25.0	ND	93	70-135			
sec-Butylbenzene	22.7	1.0	ug/l	25.0	ND	91	70-130			
tert-Butylbenzene	23.2	1.0	ug/l	25.0	ND	93	70-130			
Carbon tetrachloride	27.0	0.50	ug/l	25.0	ND	108	70-140			
Chlorobenzene	23.7	1.0	ug/l	25.0	ND	95	80-125			
Chloroethane	19.4	1.0	ug/l	25.0	ND	78	50-145			
Chloroform	22.7	1.0	ug/l	25.0	ND	91	70-130			
Chloromethane	16.5	1.0	ug/l	25.0	ND	66	30-145			
2-Chlorotoluene	22.1	1.0	ug/l	25.0	ND	88	65-145			
4-Chlorotoluene	22.6	1.0	ug/l	25.0	ND	90	70-145			
Dibromochloromethane	25.1	1.0	ug/l	25.0	ND	100	65-145			
1,2-Dibromo-3-chloropropane	26.7	5.0	úg/l	25.0	ND	107	50-150			
1,2-Dibromoethane (EDB)	25.3	1.0	ug/l	25.0	ND	101	70-125			
Dibromomethane	26.2	1.0	ug/l	25.0	ND	105	65-135			
1,2-Dichlorobenzene	25.1	1.0	ug/l	25.0	ND	100	70-130			
1,3-Dichlorobenzene	24.3	1.0	ug/l	25.0	ND	97	70-130			
1,4-Dichlorobenzene	24.9	1.0	ug/l	25.0	ND	100	75-120			
Dichlorodifluoromethane	24.5	5.0	ug/l	25.0	ND	98	10-160			
1,1-Dichloroethane	21.2	1.0	ug/l	25.0	1.3	80	65-135			
1,2-Dichloroethane	23.6	0.50	ug/l	25.0	0.67	92	60-150			
1,1-Dichloroethene	23.5	1.0	ug/l	25.0	1.0	90	65-145			
cis-1,2-Dichloroethene	22.6	1.0	ug/l	25.0	0.95	87	60-130			
trans-1,2-Dichloroethene	22.7	1.0	ug/l	25.0	ND	91	60-135			
1,2-Dichloropropane	20.9	1.0	ug/l	25.0	ND	84	60-130			
1,3-Dichloropropane	24.0	1.0	ug/l	25.0	ND	96	65-140			
2,2-Dichloropropane	19.3	1.0	ug/l	25.0	ND	77	60-150			
1,1-Dichloropropene	22.8	1.0	ug/l	25.0	ND	91	60-145			
cis-1,3-Dichloropropene	23.2	0.50	ug/l	25.0	ND	93	70-140			
trans-1,3-Dichloropropene	24.3	0.50	ug/l	25.0	ND	97	70-140			
Dol Mar Analytical Irvina										

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		KPD	Data
nalyte	Result	Limit	Units	Level	Result	%REC	Limits R	PD	Limit	Qualifiers
Batch: 4D24002 Extracted: 04/2	4/04									
latrix Spike Analyzed: 04/24/04	(4D24002-N	IS1)			Source:	IND1281	1-03			
Ethylbenzene	22.4	1.0	ug/l	25.0	ND	90	70-125			
Hexachlorobutadiene	26.8	1.0	ug/l	25.0	ND	107	65-140			
opropylbenzene	22.8	1.0	ug/l	25.0	ND	91	65-130			
p-Isopropyltoluene	22.6	1.0	ug/l	25.0	ND	90	70-130			
Methylene chloride	24.9	5.0	ug/l	25.0	1.5	94	60-135			
aphthalene	27.3	1.0	ug/l	25.0	ND	109	50-145			
Propylbenzene	22.9	1.0	ug/l	25.0	ND.	92	70-135			
Styrene	22.7	1.0	ug/l	25.0	ND	91	60-145			
1,1,2-Tetrachloroethane	25.4	1.0	ug/l	25.0	ND	102	65-145			
1,2,2-Tetrachloroethane	26.5	1.0	ug/l	25.0	ND	106	60-140			
Tetrachloroethene	32.2	1.0	ug/l	25.0	7.3	100	70-130			
Toluene	21.8	1.0	ug/l	25.0	ND	87	65-120			
2,3-Trichlorobenzene	28.2	1.0	ug/l	25.0	ND	113	60-135			
4-Trichlorobenzene	27.9	1.0	ug/l	25.0	ND	112	55-140			
1,1,1-Trichloroethane	22.5	1.0	ug/l	25.0	ND	90	75-140			
1,2-Trichloroethane	25.3	1.0	ug/l	25.0	ND	101	60-135			
ichloroethene	37.7	1.0	ug/l	25.0	13	99	70-125			
Trichlorofluoromethane	23.3	1.0	ug/l	25.0	ND	93	50-150			
1 2,3-Trichloropropane	25.0	1.0	ug/l	25.0	ND	100	60-140			
2,4-Trimethylbenzene	21.9	1.0	ug/l	25.0	ND	88	60-125			
7,3,5-Trimethylbenzene	22.1	1.0	ug/l	25.0	ND	. 88	70-130			
Vinyl chloride	21.6	0.50	ug/l	25.0	ND	86	40-130			
Xylene	22.3	1.0	ug/l	25.0	ND	89	65-125			
-p-Xylenes	44.5	1.0	ug/l	50.0	ND	89	60-125			
Surrogate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-120			
rrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
rrogate: 4-Bromofluorobenzene	25.8		ug/l	25.0		103	80-120			
_										

el Mar Analytical, Irvine

tty Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte Result Limit Units Level Result %REC Limits RPD Limit Qualifi	
	ers
Batch: 4D24002 Extracted: 04/24/04	
Matrix Spike Dup Analyzed: 04/24/04 (4D24002-MSD1) Source: IND1281-03	
Benzene 22.5 0.50 ug/l 25.0 ND 90 70-120 2 20	
Bromobenzene 25.0 1.0 ug/l 25.0 ND 100 60-135 4 25	
Bromochloromethane 23.3 1.0 ug/l 25.0 ND 93 60-140 3 25	
Bromodichloromethane 25.8 1.0 ug/l 25.0 ND 103 70-140 3 20	
Bromoform 26.8 1.0 ug/l 25.0 ND 107 50-135 2 25	
Bromomethane 25.8 1.0 ug/l 25.0 ND 103 50-140 2 25	
n-Butylbenzene 24.0 1.0 ug/l 25.0 ND 96 70-135 3 20	
sec-Butylbenzene 23.7 1.0 ug/l 25.0 ND 95 70-130 4 20	
tert-Butylbenzene 24.3 1.0 ug/l 25.0 ND 97 70-130 5 20	
Carbon tetrachloride 27.6 0.50 ug/l 25.0 ND 110 70-140 2 25	
Chlorobenzene 24.4 1.0 ug/l 25.0 ND 98 80-125 3 20	
Chloroethane 20.4 1.0 ug/l 25.0 ND 82 50-145 5 25	
Chloroform 23.2 1.0 ug/l 25.0 ND 93 70-130 2 20	
Chloromethane 17.2 1.0 ug/l 25.0 ND 69 30-145 4 30	
2-Chlorotoluene 23.0 1.0 ug/l 25.0 ND 92 65-145 4 25	
4-Chlorotoluene 23.5 1.0 ug/l 25.0 ND 94 70-145 4 20	
Dibromochloromethane 25.2 1.0 ug/l 25.0 ND 101 65-145 0 20	
1,2-Dibromo-3-chloropropane 26.4 5.0 ug/l 25.0 ND 106 50-150 1 25	
1,2-Dibromoethane (EDB) 25.8 1.0 ug/l 25.0 ND 103 70-125 2 20	
Dibromomethane 26.1 1.0 ug/l 25.0 ND 104 65-135 0 20	
1,2-Dichlorobenzene 26.3 1.0 ug/l 25.0 ND 105 70-130 5 20	
1,3-Dichlorobenzene 25.2 1.0 ug/l 25.0 ND 101 70-130 4 20	
1,4-Dichlorobenzene 25.7 1.0 ug/l 25.0 ND 103 75-120 3 20	
Dichlorodifluoromethane 25.0 5.0 ug/l 25.0 ND 100 10-160 2 30	
1,1-Dichloroethane 21.9 1.0 ug/l 25.0 1.3 82 65-135 3 20	
1,2-Dichloroethane 24.1 0.50 ug/l 25.0 0.67 94 60-150 2 25	
1,1-Dichloroethene 23.7 1.0 ug/l 25.0 1.0 91 65-145 1 25	
cis-1,2-Dichloroethene 23.2 1.0 ug/l 25.0 0.95 89 60-130 3 20	
trans-1,2-Dichloroethene 22.7 1.0 ug/l 25.0 ND 91 60-135 0 20	
1,2-Dichloropropane 21.8 1.0 ug/l 25.0 ND 87 60-130 4 20	
1,3-Dichloropropane 24.4 1.0 ug/l 25.0 ND 98 65-140 2 25	
2,2-Dichloropropane 20.2 1.0 ug/l 25.0 ND 81 60-150 5 20	
1,1-Dichloropropene 23.4 1.0 ug/l 25.0 ND 94 60-145 3 20	
cis-1,3-Dichloropropene 23.9 0.50 ug/l 25.0 ND 96 70-140 3 20	
trans-1,3-Dichloropropene 24.3 0.50 ug/l 25.0 ND 97 70-140 0 20	

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D24002 Extracted: 04/2	4/04									
Iatrix Spike Dup Analyzed: 04/2	24/04 (4D240	02-MSD1)			Source:	IND1281	-03			
Ethylbenzene	23.2	1.0	ug/l	25.0	ND	93	70-125	4	20	
Hexachlorobutadiene	27.4	1.0	ug/l	25.0	ND-	110	65-140	2	25	
opropylbenzene	24.0	1.0	ug/l	25.0	ND	96	65-130	5	25	
P-Isopropyltoluene	23.1	1.0	ug/l	25.0	ND	92	70-130	2	20	
Methylene chloride	24.7	5.0	ug/l	25.0	1.5	93	60-135	1	20	
aphthalene	27.5	1.0	ug/l	25.0	ND	110	50-145	1	25	
Propylbenzene	23.7	1.0	ug/l	25.0	ND	95	70-135	3	20	
Styrene	18.4	1.0	ug/l	25.0	ND	74	60-145	21	25	
¹ I,1,2-Tetrachloroethane	26.3	1.0	ug/l	25.0	ND	105	65-145	3	20	
1,2,2-Tetrachloroethane	26.6	1.0	ug/l	25.0	ND	106	60-140	0	25	
Tetrachloroethene	32.8	1.0	ug/l	25.0	7.3	102	70-130	2	20	
Toluene	22.2	1.0	ug/l	25.0	ND	89	65-120	2	20	
2,3-Trichlorobenzene	28.7	1.0	ug/l	25.0	ND	115	60-135	2	20	
2,4-Trichlorobenzene	28.5	1.0	ug/l	25.0	ND	114	55-140	2	25	
1,1,1-Trichloroethane	23.0	1.0	ug/l	25.0	ND	92	75-140	2	20	
1,2-Trichloroethane	25.2	1.0	ug/l	25.0	ND	101	60-135	0	20	
ichloroethene	38.2	1.0	ug/l	25.0	13	101	70-125	1	20	
Trichlorofluoromethane	23.8	1.0	ug/l	25.0	ND	95	50-150	2	25	
¹ 2,3-Trichloropropane	25.4	1.0	ug/l	25.0	ND	102	60-140	2	25	
2,4-Trimethylbenzene	20.8	1.0	ug/l	25.0	ND	83	60-125	5	20	
7,3,5-Trimethylbenzene	22.1	1.0	ug/l	25.0	ND	88	70-130	0	20	
Vinyl chloride	22.7	0.50	ug/l	25.0	ND	91	40-130	5	25	
Xylene	22.6	1.0	ug/l	25.0	ND.	90	65-125	1	20	
p-Xylenes	45.0	1.0	ug/l	50.0	ND	90	60-125	1	25	,
Surrogate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-120			
rrogate: Toluene-d8	27.4		ug/l	25.0		110	80-120			
rrogate: 4-Bromofluorobenzene	25.5		ug/l	25.0		102	80-120			

el Mar Analytical, Irvine

atty Mata

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04

Received: 04/20/04

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	(
Batch: 4D22075 Extracted: 04/22/0	04										
Blank Analyzed: 04/23/04 (4D2207	5-BLK1)										
Cadmium	. ND	0.0050	mg/l								
Chromium	ND	0.0050	mg/l								
Copper	ND	0.010	mg/l								
LCS Analyzed: 04/23/04 (4D22075	-BS1)										
Cadmium	0.930	0.0050	mg/l	1.00		93	80-120				
Chromium	0.943	0.0050	mg/l	1.00		94	80-120				
Copper	0.948	0.010	mg/l	1.00		95	80-120				
Matrix Spike Analyzed: 04/23/04 (4D22075-MS	51)			Source:	IND1281	-02				
Cadmium	0.890	0.0050	mg/l	1.00	ND	89	75-125				
Chromium	0.912	0.0050	mg/l	1.00	0.00080	91	75-125				
Copper	0.884	0.010	mg/l	1.00	0.041	84	75-125				
Matrix Spike Dup Analyzed: 04/23	/04 (4D2207	5-MSD1)			Source:	IND1281	1-02				
Cadmium	1.01	0.0050	mg/l	1.00	ND	101	75-125	. 13	20		
Chromium	1.01	0.0050	mg/l	1.00	0.00080	101	75-125	10	20		
Copper	0.951	0.010	mg/l	1.00	0.041	91	75-125	7	20		

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

rvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04

Report Number: IND1281

Received: 04/20/04

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D20097 Extracted: 04/20	0/04									
_ank Analyzed: 04/20/04 (4D20	097-BLK1)									
Chromium VI	ND	0.0010	mg/l							
CS Analyzed: 04/20/04 (4D2009	97-BS1)									
romium VI	0.0543	0.0010	mg/l	0.0500		109	90-110			
Matrix Spike Analyzed: 04/20/04	(4D20097-N	1 S1)			Source:	IND1279)-01			
romium VI	0.0507	0.0010	mg/l	0.0500	0.00023	101	80-115			
Matrix Spike Dup Analyzed: 04/2	20/04 (4D200	97-MSD1)			Source:	IND1279	9-01			
Chromium VI	0.0506	0.0010	mg/l	0.0500	0.00023	101	80-115	0	15	
ntch: 4D21063 Extracted: 04/2	1/04									
Duplicate Analyzed: 04/21/04 (4)	D21063-DUP	1)			Source:	IND1281	1-02			
i I	7.25	NA	pH Units		7.23			0	5	
Sec. 16										

el Mar Analytical, Irvine

Ltty Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PhibroTech, 2279-Apr 2004

Report Number: IND1281

Sampled: 04/20/04 Received: 04/20/04

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

Del Mar Analytical, IrvinePatty Mata
Project Manager

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PhibroTech, 2279-Apr 2004

Sampled: 04/20/04

Report Number: IND1281

Received: 04/20/04

Certification Summary

Del Mar Analytical, Irvine

	Method	Matrix	NELAP	CA
-	EPA 150.1	Water	X	X
	EPA 6010B-Diss	Water	X	X
	EPA 7199	Water	X	X
-	EPA 8260B	Water	X	X

NV and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

el Mar Analytical, Irvine tty Mata

LABORATORY REPORT

Prepared For: Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Sampled: 04/21/04 Received: 04/21/04

Issued: 04/30/04

NELAP #01108CA CA ELAP #1197

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 3°C, on ice and with chain of custody documentation.

HOLDING TIMES: Holding times were met.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

IND1400-01 PTI-TB02-061 Water IND1400-02 PTI-MW07-061 Water IND1400-03 PTI-DI-061 Water IND1400-04 PTI-MW14S-061 Water IND1400-05 PTI-MW04A-061 Water IND1400-06 PTI-MW35-061 Water IND1400-07 PTI-MW04-061 Water IND1400-08 PTI-EB02-061 Water IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water IND1400-13 PTI-MW09-061 Water	LABORATORY ID	CLIENT ID	MATRIX
IND1400-03 PTI-DI-061 Water IND1400-04 PTI-MW14S-061 Water IND1400-05 PTI-MW04A-061 Water IND1400-06 PTI-MW35-061 Water IND1400-07 PTI-MW04-061 Water IND1400-08 PTI-EB02-061 Water IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-01	PTI-TB02-061	Water
IND1400-04 PTI-MW14S-061 Water IND1400-05 PTI-MW04A-061 Water IND1400-06 PTI-MW35-061 Water IND1400-07 PTI-MW04-061 Water IND1400-08 PTI-EB02-061 Water IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-02	PTI-MW07-061	Water
IND1400-05 PTI-MW04A-061 Water IND1400-06 PTI-MW35-061 Water IND1400-07 PTI-MW04-061 Water IND1400-08 PTI-EB02-061 Water IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-03	PTI-DI-061	Water
IND1400-06 PTI-MW35-061 Water IND1400-07 PTI-MW04-061 Water IND1400-08 PTI-EB02-061 Water IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-04	PTI-MW14S-061	Water
IND1400-07 PTI-MW04-061 Water IND1400-08 PTI-EB02-061 Water IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-05	PTI-MW04A-061	Water
IND1400-08 PTI-EB02-061 Water IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-06	PTI-MW35-061	Water
IND1400-09 PTI-MW15D-061 Water IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-07	PTI-MW04-061	Water
IND1400-10 PTI-MW15S-061 Water IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-08	PTI-EB02-061	Water
IND1400-11 PTI-MW16-061 Water IND1400-12 PTI-MW37-061 Water	IND1400-09	PTI-MW15D-061	Water
IND1400-12 PTI-MW37-061 Water	IND1400-10	PTI-MW15S-061	Water
	IND1400-11	PTI-MW16-061	Water
IND1400-13 PTI-MW09-061 Water	IND1400-12	PTI-MW37-061	Water
	IND1400-13	PTI-MW09-061	Water

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

LABORATORY ID

CLIENT ID

MATRIX

IND1400-14

PTI-MW11-061

Water

Mar Analytical, Irvine Lity Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

VOLITIES OF GOING (STITE OF OR										
Analyte	Method] Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IND1400-01 (PTI-TB02-06	l - Water)									
Reporting Units: ug/l										
Benzene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Bromobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Bromochloromethane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Bromodichloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Bromoform	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Bromomethane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
n-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
sec-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
tert-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Carbon tetrachloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Chlorobenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Chloroethane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Chloroform	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Chloromethane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
2-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
4-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dibromochloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004			
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dibromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,3-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,4-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dichlorodifluoromethane	EPA 8260B	4D25002	5.0	ND -	1	4/25/2004	4/25/2004			
1,1-Dichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichloroethane	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
1,1-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
cis-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
trans-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,3-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
2,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,1-Dichloropropene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
cis-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
trans-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Ethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Hexachlorobutadiene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Isopropylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
p-Isopropyltoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Methylene chloride	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004			

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue #200

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			Reporting		Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
ample ID: IND1400-01 (PTI-TB02-061	- Water) - con	ıt.						
Reporting Units: ug/l								
Naphthalene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Propylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Styrene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
etrachloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
² ,3-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1.1,2-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
ichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
#ichlorofluoromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
3,5-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
^ Xylene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
,p-Xylenes	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromethane (80-12	0%)			104 %				
Surrogate: Toluene-d8 (80-120%)				109 %				
rrogate: 4-Bromofluorobenzene (80-120	<i>)%)</i>			102 %				

el Mar Analytical, Irvine

utty Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

VOLATILE ORGANICS by GC/MS (ETA 5050D/0200D)										
	3.6.4.3		Reporting		Dilution		Date	Data		
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzea	Qualifiers		
Sample ID: IND1400-02 (PTI-MW07-	-061 - Water)									
Reporting Units: ug/l										
Benzene	EPA 8260B	4D25002	0.50	ND	1		4/25/2004			
Bromobenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Bromochloromethane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Bromodichloromethane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Bromoform	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Bromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
n-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
sec-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
tert-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Carbon tetrachloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Chlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Chloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Chloroform	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Chloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
2-Chlorotoluene	EPA 8260B	4D25002	1.0	ND.	1	4/25/2004	4/25/2004			
4-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dibromochloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004			
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dibromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,3-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,4-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dichlorodifluoromethane	EPA 8260B	4D25002	5.0	ND	1		4/25/2004			
1,1-Dichloroethane	EPA 8260B	4D25002	1.0	14	1	4/25/2004	4/25/2004			
1,2-Dichloroethane	EPA 8260B	4D25002	0.50	3.4	1		4/25/2004			
1,1-Dichloroethene	EPA 8260B	4D25002	1.0	1.4	1		4/25/2004			
cis-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	4.4	1		4/25/2004			
trans-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
1,3-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
2,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,1-Dichloropropene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
cis-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1		4/25/2004			
-										
trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Methylene chloride	EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B	4D25002 4D25002 4D25002 4D25002 4D25002 4D25002	0.50 1.0 1.0 1.0 1.0 5.0	ND ND ND ND ND ND	1 1 1 1 1	4/25/2004 4/25/2004 4/25/2004 4/25/2004	4/25/2004 4/25/2004 4/25/2004 4/25/2004 4/25/2004 4/25/2004			

Del Mar Analytical, Irvine

Camp, Dresser & McKee

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
_ample ID: IND1400-02 (PTI-M	(W07-061 - Water) - co	ont.					•	
Reporting Units: ug/l	, , ,							
Naphthalene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Propylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Styrene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
trachloroethene	EPA 8260B	4D25002	1.0	2.2	1	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,3-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
T,1,1-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1.1,2-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
cichloroethene	EPA 8260B	4D25002	1.0	28	1	4/25/2004	4/25/2004	
#ichlorofluoromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
3,5-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
e Xylene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
p-Xylenes	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromethane	e (80-120%)			110 %				
Surrogate: Toluene-d8 (80-120%)				110 %				
. rrogate: 4-Bromofluorobenzene	(80-120%)			104 %				
Admin .								

1 : 1 Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

& McKee Project ID: PTI, Phibro-Tech 2279 venue, #200 PhibroTech, April 2004

Irvine, CA 92612 Attention: Sharon Wallin

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

VOL	ATILE OKG	ANICSD	y GC/Ms	(EFA 3	OSUDIO	200D)		
<u>-</u>			Reporting	_	Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IND1400-03 (PTI-DI-061	- Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4D25002	0.50	ND	1		4/25/2004	
Bromobenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004	
Bromochloromethane	EPA 8260B	4D25002	1.0	ND	1		4/25/2004	
Bromodichloromethane	EPA 8260B	4D25002	1.0	1.4	1		4/25/2004	
Bromoform	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Bromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
n-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
sec-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
tert-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Carbon tetrachloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
Chlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Chloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Chloroform	EPA 8260B	4D25002	1.0	9.6	1	4/25/2004	4/25/2004	
Chloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
4-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Dibromochloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Dibromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,3-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,4-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Dichlorodifluoromethane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004	
1,1-Dichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dichloroethane	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
1,1-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,3-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1-Dichloropropene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
Ethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Hexachlorobutadiene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004	
Isopropylbenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004	
p-Isopropyltoluene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004	
Methylene chloride	EPA 8260B	4D25002	5.0	ND	1		4/25/2004	
	21102000		0.0		•			

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

*Attention: Sharon Wallin

Irvine, CA 92612

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

]	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result		Extracted	Analyzed	Qualifiers
ample ID: IND1400-03 (PTI-DI	-061 - Water) - cont.							
Reporting Units: ug/l								
Naphthalene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Propylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Ryrene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
trachloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
¹ 2,3-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
T,1,1-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,2-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
ichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
wichlorofluoromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
_3,5-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
o-Xylene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
p-Xylenes	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromethane	(80-120%)			108 %				
Surrogate: Toluene-d8 (80-120%)				106 %				
rrogate: 4-Bromofluorobenzene	(80-120%)			102 %				

I d Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

]	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IND1400-04 (PTI-MW1 Reporting Units: ug/l	4S-061 - Water)							
Benzene	EPA 8260B	4D25002	2.0	2.2	4	4/25/2004	4/25/2004	
Bromobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromochloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromodichloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromoform	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromomethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
n-Butylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
sec-Butylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
tert-Butylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Carbon tetrachloride	EPA 8260B	4D25002	2.0	17	4	4/25/2004	4/25/2004	
Chlorobenzene	EPA 8260B	4D25002	4.0	4.3	4	4/25/2004	4/25/2004	
Chloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Chloroform	EPA 8260B	4D25002	4.0	33	4	4/25/2004	4/25/2004	
Chloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2-Chlorotoluene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
4-Chlorotoluene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Dibromochloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	20	ND	4	4/25/2004	4/25/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Dibromomethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2-Dichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,3-Dichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,4-Dichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Dichlorodifluoromethane	EPA 8260B	4D25002	20	ND	4	4/25/2004	4/25/2004	
1,1-Dichloroethane	EPA 8260B	4D25002	4.0	87	4	4/25/2004	4/25/2004	
1,2-Dichloroethane	EPA 8260B	4D25002	2.0	26	4	4/25/2004	4/25/2004	
1,1-Dichloroethene	EPA 8260B	4D25002	4.0	77	4	4/25/2004	4/25/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D25002	4.0	13	4	4/25/2004	4/25/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2-Dichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,3-Dichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2,2-Dichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,1-Dichloropropene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D25002	2.0	ND	4	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D25002	2.0	ND	4	4/25/2004	4/25/2004	
Ethylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Hexachlorobutadiene	EPA 8260B	4D25002	4.0	ND	4		4/25/2004	
Isopropylbenzene	EPA 8260B	4D25002	4.0	ND	4		4/25/2004	
p-Isopropyltoluene	EPA 8260B	4D25002	4.0	ND	4		4/25/2004	
Methylene chloride	EPA 8260B	4D25002	20	ND	4		4/25/2004	

Del Mar Analytical, Irvine

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		1	- Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result		Extracted		Qualifiers
_ample ID: IND1400-04 (PTI-MW14S-	061 - Water) -	cont.						
Reporting Units: ug/l	ŕ							
Naphthalene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Propylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Styrene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
etrachloroethene	EPA 8260B	4D25002	4.0	4.9	4	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
² ,3-Trichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	4.0	4.6	4	4/25/2004	4/25/2004	
I,1,1-Trichloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1.1,2-Trichloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
richloroethene	EPA 8260B	4D25002	4.0	570	4	4/25/2004	4/25/2004	
#ichlorofluoromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
3,5-Trimethylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	2.0	ND	4	4/25/2004	4/25/2004	
^ Xylene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
p-Xylenes	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromethane (80-1.	20%)			108 %				
Surrogate: Toluene-d8 (80-120%)				109 %				
rrogate: 4-Bromofluorobenzene (80-12	20%)			101 %				

] ≥l Mar Analytical, Irvine

tty Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1400-05 (PTI-MW04)	A-061 - Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4D26008	0.50	ND	1	4/26/2004	4/26/2004	
Bromobenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Bromochloromethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Bromodichloromethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Bromoform	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Bromomethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
n-Butylbenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
sec-Butylbenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
tert-Butylbenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Carbon tetrachloride	EPA 8260B	4D26008	0.50	ND	1	4/26/2004	4/26/2004	
Chlorobenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Chloroethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Chloroform	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Chloromethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
2-Chlorotoluene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
4-Chlorotoluene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Dibromochloromethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D26008	5.0	ND	1	4/26/2004	4/26/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Dibromomethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,2-Dichlorobenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,3-Dichlorobenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,4-Dichlorobenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Dichlorodifluoromethane	EPA 8260B	4D26008	5.0	ND	1	4/26/2004	4/26/2004	
1,1-Dichloroethane	EPA 8260B	4D26008	3 1.0	16	1	4/26/2004	4/26/2004	
1,2-Dichloroethane	EPA 8260B	4D26008	0.50	ND	1	4/26/2004	4/26/2004	
1,1-Dichloroethene	EPA 8260B	4D26008	3 1.0	2.0	1	4/26/2004	4/26/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D26008	3 1.0	1.3	1	4/26/2004	4/26/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,2-Dichloropropane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,3-Dichloropropane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
2,2-Dichloropropane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,1-Dichloropropene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D26008	0.50	ND	1	4/26/2004	4/26/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D26008	0.50	ND	1	4/26/2004	4/26/2004	
Ethylbenzene	EPA 8260B	4D26008		ND	1		4/26/2004	
Hexachlorobutadiene	EPA 8260B	4D26008		ND	1		4/26/2004	
Isopropylbenzene	EPA 8260B	4D26008		ND	1		4/26/2004	
p-Isopropyltoluene	EPA 8260B	4D26008		ND	1		4/26/2004	
Methylene chloride	EPA 8260B	4D26008		ND	1		4/26/2004	

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

Attention: Sharon Wallin

18581 Teller Avenue, #200 Irvine, CA 92612 Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

•		I I	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
_ample ID: IND1400-05 (PTI-MW04A	A-061 - Water) -	cont.						
Reporting Units: ug/l								
Naphthalene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
-Propylbenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Styrene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
,1,2,2-Tetrachloroethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
etrachloroethene	EPA 8260B	4D26008	1.0	1.8	1	4/26/2004	4/26/2004	
Toluene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
,2,3-Trichlorobenzene	EPA 8260B	4D26008	1.0	ND	1 .	4/26/2004	4/26/2004	
2,4-Trichlorobenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,1,1-Trichloroethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
1,1,2-Trichloroethane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
richloroethene	EPA 8260B	4D26008	1.0	20	1	4/26/2004	4/26/2004	
Trichlorofluoromethane	EPA 8260B	4D26008	1.0	ND	. 1	4/26/2004	4/26/2004	
1,2,3-Trichloropropane	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
2,4-Trimethylbenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
3,5-Trimethylbenzene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Vinyl chloride	EPA 8260B	4D26008	0.50	ND	1	4/26/2004	4/26/2004	
Xylene	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
,p-Xylenes	EPA 8260B	4D26008	1.0	ND	1	4/26/2004	4/26/2004	
Surrogate: Dibromofluoromethane (80-1	(20%)			104 %				
Surrogate: Toluene-d8 (80-120%)				109 %				
ırrogate: 4-Bromofluorobenzene (80-1	20%)			101 %				

el Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

	N		Reporting		Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IND1400-06 (PTI-MW35-06 Reporting Units: ug/l	61 - Water)							
Benzene	EPA 8260B	4D25002	1.2	3.3	2.5	4/25/2004	4/25/2004	
Bromobenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Bromochloromethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Bromodichloromethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Bromoform	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Bromomethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
n-Butylbenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
sec-Butylbenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
tert-Butylbenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Carbon tetrachloride	EPA 8260B	4D25002	1.2	ND	2.5	4/25/2004	4/25/2004	
Chlorobenzene	EPA 8260B	4D25002	2.5	3.1	2.5	4/25/2004	4/25/2004	
Chloroethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Chloroform	EPA 8260B	4D25002	2.5	14	2.5	4/25/2004	4/25/2004	
Chloromethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
2-Chlorotoluene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
4-Chlorotoluene	EPA 8260B	4D25002	2.5	NĎ	2.5	4/25/2004	4/25/2004	
Dibromochloromethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	12	ND	2.5	4/25/2004	4/25/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Dibromomethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,2-Dichlorobenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,3-Dichlorobenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,4-Dichlorobenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Dichlorodifluoromethane	EPA 8260B	4D25002	12	ND	2.5	4/25/2004	4/25/2004	
1,1-Dichloroethane	EPA 8260B	4D25002	2.5	180	2.5	4/25/2004	4/25/2004	
1,2-Dichloroethane	EPA 8260B	4D25002	1.2	160	2.5	4/25/2004	4/25/2004	
1,1-Dichloroethene	EPA 8260B	4D25002	2.5	99	2.5	4/25/2004	4/25/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D25002	2.5	110	2.5	4/25/2004	4/25/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D25002	2.5	3.0	2.5	4/25/2004	4/25/2004	
1,2-Dichloropropane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,3-Dichloropropane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
2,2-Dichloropropane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,1-Dichloropropene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D25002	1.2	ND	2.5	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D25002	1.2	ND	2.5	4/25/2004	4/25/2004	
Ethylbenzene	EPA 8260B	4D25002	2.5	ND	2.5		4/25/2004	
Hexachlorobutadiene	EPA 8260B	4D25002	2.5	ND	2.5		4/25/2004	
Isopropylbenzene	EPA 8260B	4D25002	2.5	4.4	2.5		4/25/2004	
p-Isopropyltoluene	EPA 8260B	4D25002	2.5	ND	2.5		4/25/2004	
Methylene chloride	EPA 8260B	4D25002	12	70	2.5		4/25/2004	

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	I Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
wample ID: IND1400-06 (PTI-MW3	5-061 - Water) - co	ont.					-	-
Reporting Units: ug/l								
laphthalene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Propylbenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Styrene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
,1,2,2-Tetrachloroethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
T etrachloroethene	EPA 8260B	4D25002	2.5	3.9	2.5	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
,2,3-Trichlorobenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,1,1-Trichloroethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,2-Trichloroethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
richloroethene	EPA 8260B	4D25002	2.5	330	2.5	4/25/2004	4/25/2004	
Trichlorofluoromethane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
,2,4-Trimethylbenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
7,3,5-Trimethylbenzene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	1.2	ND	2.5	4/25/2004	4/25/2004	
-Xylene	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
,p-Xylenes	EPA 8260B	4D25002	2.5	ND	2.5	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromethane (80)-120%)			109 %				
Currogate: Toluene-d8 (80-120%)				111 %				
urrogate: 4-Bromofluorobenzene (80-	-120%)			104 %				

el Mar Analytical, Irvine

Tatty Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

]	Reporting		Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IND1400-07 (PTI-MW04-0 Reporting Units: ug/l	61 - Water)							
Benzene	EPA 8260B	4D25002	2.0	3.3	4	4/25/2004	4/25/2004	
Bromobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromochloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromodichloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromoform	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Bromomethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
n-Butylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
sec-Butylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
tert-Butylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Carbon tetrachloride	EPA 8260B	4D25002	2.0	ND	4	4/25/2004	4/25/2004	
Chlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Chloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Chloroform	EPA 8260B	4D25002	4.0	14	4	4/25/2004	4/25/2004	
Chloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2-Chlorotoluene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
4-Chlorotoluene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Dibromochloromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	20	ND	4	4/25/2004	4/25/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Dibromomethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2-Dichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,3-Dichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,4-Dichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Dichlorodifluoromethane	EPA 8260B	4D25002	20	ND	4	4/25/2004	4/25/2004	
1,1-Dichloroethane	EPA 8260B	4D25002	4.0	180	4	4/25/2004	4/25/2004	
1,2-Dichloroethane	EPA 8260B	4D25002	2.0	140	4	4/25/2004	4/25/2004	
1,1-Dichloroethene	EPA 8260B	4D25002	4.0	99	4	4/25/2004	4/25/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D25002	4.0	110	4	4/25/2004	4/25/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2-Dichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,3-Dichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2,2-Dichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,1-Dichloropropene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D25002	2.0	ND	4	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D25002	2.0	ND	4	4/25/2004	4/25/2004	
Ethylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Hexachlorobutadiene	EPA 8260B	4D25002	4.0	ND	4		4/25/2004	
Isopropylbenzene	EPA 8260B	4D25002		4.3	4		4/25/2004	
p-Isopropyltoluene	EPA 8260B	4D25002	4.0	ND	4		4/25/2004	
Methylene chloride	EPA 8260B	4D25002		70	4		4/25/2004	

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200

18581 Teller Avenue, #200 Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analysta	Method		Reporting	-	Dilution		Date	Data
Analyte		Batch	Limit	Result	Factor	Extracted	Anaiyzeu	Qualifiers
ample ID: IND1400-07 (PTI-M	W04-061 - Water) - co	ont.						
Reporting Units: ug/l								
Maphthalene	EPA 8260B	4D25002	4.0	ND	4		4/25/2004	
Propylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Styrene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
etrachloroethene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2,3-Trichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,1,1-Trichloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1 1,2-Trichloroethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
richloroethene	EPA 8260B	4D25002	4.0	330	4	4/25/2004	4/25/2004	
Trichlorofluoromethane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
3,5-Trimethylbenzene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	2.0	ND	4		4/25/2004	
Xylene	EPA 8260B	4D25002	4.0	ND	4	4/25/2004	4/25/2004	
,p-Xylenes	EPA 8260B	4D25002	4.0	ND	4	4/25/2004		
Surrogate: Dibromofluoromethane				108 %				
Surrogate: Toluene-d8 (80-120%)	,			110 %				
rrogate: 4-Bromofluorobenzene				101 %				
aroguie. 4-bromojiuorobenzene	(00-12070)			101 /0				

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1400-08 (PTI-EB02-06	1 - Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4D25002	2 0.50	ND	1	4/25/2004	4/25/2004	
Bromobenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Bromochloromethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Bromodichloromethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Bromoform	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Bromomethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
n-Butylbenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
sec-Butylbenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
tert-Butylbenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Carbon tetrachloride	EPA 8260B	4D25002	2 0.50	ND	1	4/25/2004	4/25/2004	
Chlorobenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Chloroethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Chloroform	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Chloromethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
2-Chlorotoluene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
4-Chlorotoluene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Dibromochloromethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	2 5.0	ND	1	4/25/2004	4/25/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Dibromomethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dichlorobenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,3-Dichlorobenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,4-Dichlorobenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Dichlorodifluoromethane	EPA 8260B	4D25002	2 5.0	ND	1	4/25/2004	4/25/2004	
1,1-Dichloroethane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dichloroethane	EPA 8260B	4D25002	2 0.50	ND	1	4/25/2004	4/25/2004	
1,1-Dichloroethene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dichloropropane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,3-Dichloropropane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
2,2-Dichloropropane	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
1,1-Dichloropropene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D25002	2 0.50	ND	1	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D25002	2 0.50	ND	1	4/25/2004	4/25/2004	
Ethylbenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Hexachlorobutadiene	EPA 8260B	4D25002		ND	1	4/25/2004	4/25/2004	
Isopropylbenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
p-Isopropyltoluene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Methylene chloride	EPA 8260B	4D25002	2 5.0	ND	1	4/25/2004	4/25/2004	

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

	VOLITIES ON GENTLE (ETT 50500/02000)									
Amalasta	Made 3		Reporting		Dilution		Date	Data		
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Anaiyzea	Qualifiers		
ample ID: IND1400-08 (PTI-	EB02-061 - Water) - con	ıt.								
Reporting Units: ug/l										
Naphthalene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
-Propylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Styrene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
etrachloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Toluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
2,3-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
2,4-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,1,1-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1 1,2-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
richloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Trichlorofluoromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2,3-Trichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
2,4-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
3,5-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Vinyl chloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Xylene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
,p-Xylenes	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Surrogate: Dibromofluoromethe	ane (80-120%)			107 %						
Surrogate: Toluene-d8 (80-120)				110 %						
rrogate: 4-Bromofluorobenze	ne (80-120%)			102 %						
_										

l el Mar Analytical, Irvine

Ltty Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200 Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Irvine, CA 92612 Attention: Sharon Wallin Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Continue of the Continue of th										
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IND1400-09 (PTI-MW1	5D-061 - Water)									
Reporting Units: ug/l	,									
Benzene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Bromobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Bromochloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Bromodichloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Bromoform	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Bromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
n-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
sec-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
tert-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Carbon tetrachloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Chlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Chloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Chloroform	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Chloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
2-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
4-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dibromochloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004			
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Dibromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
1,3-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
1,4-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Dichlorodifluoromethane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004			
1,1-Dichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichloroethane	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
1,1-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
cis-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
trans-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,3-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
2,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
1,1-Dichloropropene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
cis-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1		4/25/2004			
trans-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004			
Ethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004			
Hexachlorobutadiene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Isopropylbenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
p-Isopropyltoluene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004			
Methylene chloride	EPA 8260B	4D25002	5.0	ND	1		4/25/2004			
*	-				-					

Del Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Irvine, CA 92612 Attention: Sharon Wallin

Sampled: 04/21/04 Received: 04/21/04 Report Number: IND1400

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Amaluta	Mathad		Reporting	-	Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
mample ID: IND1400-09 (PTI-M	W15D-061 - Water) -	cont.						
Reporting Units: ug/l								
laphthalene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
-Propylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Styrene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
,1,2,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
etrachloroethene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
,2,3-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,2-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
richloroethene	EPA 8260B	4D25002	1.0	3.6	1	4/25/2004	4/25/2004	
Trichlorofluoromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
3,5-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
-Xylene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
,p-Xylenes	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromethane	e (80-120%)			110 %				
Surrogate: Toluene-d8 (80-120%)				112 %				
ırrogate: 4-Bromofluorobenzene				101 %				
de la constant de la								

el Mar Analytical, Irvine

atty Mata

18581 Teller Avenue, #200 Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1400-10 (PTI-MW15 Reporting Units: ug/l	S-061 - Water)							
	ED 4 92/0D	4D25002	0.50	NIIN	1	4/25/2004	4/25/2004	
Benzene	EPA 8260B	4D25002		ND	1		4/25/2004 4/25/2004	
Bromobenzene	EPA 8260B	4D25002		ND	1			
Bromochloromethane	EPA 8260B	4D25002		ND	1		4/25/2004	
Bromodichloromethane Bromoform	EPA 8260B	4D25002 4D25002		ND ND	1		4/25/2004 4/25/2004	
Bromomethane	EPA 8260B	4D25002		ND ND	1		4/25/2004	
	EPA 8260B				1			
n-Butylbenzene	EPA 8260B	4D25002		ND	1		4/25/2004 4/25/2004	
sec-Butylbenzene	EPA 8260B	4D25002		ND	1 .			
tert-Butylbenzene	EPA 8260B	4D25002		ND	1		4/25/2004	
Carbon tetrachloride	EPA 8260B	4D25002		0.63	1		4/25/2004	
Chlorosthana	EPA 8260B	4D25002		ND	1		4/25/2004	
Chloroethane	EPA 8260B	4D25002		ND	1		4/25/2004	
Chloroform	EPA 8260B	4D25002		4.3	1		4/25/2004	
Chloromethane	EPA 8260B	4D25002		ND	1		4/25/2004	
2-Chlorotoluene	EPA 8260B	4D25002		ND	1		4/25/2004	
4-Chlorotoluene	EPA 8260B	4D25002		ND	1		4/25/2004	
Dibromochloromethane	EPA 8260B	4D25002		ND	1		4/25/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002		ND	1		4/25/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002		ND	1		4/25/2004	
Dibromomethane	EPA 8260B	4D25002		ND	1		4/25/2004	
1,2-Dichlorobenzene	EPA 8260B	4D25002		ND	1		4/25/2004	
1,3-Dichlorobenzene	EPA 8260B	4D25002		ND	1		4/25/2004	
1,4-Dichlorobenzene	EPA 8260B	4D25002		ND	1		4/25/2004	
Dichlorodifluoromethane	EPA 8260B	4D25002		ND	1		4/25/2004	
1,1-Dichloroethane	EPA 8260B	4D25002		18	1		4/25/2004	
1,2-Dichloroethane	EPA 8260B	4D25002		40	1		4/25/2004	
1,1-Dichloroethene	EPA 8260B	4D25002		8.6	1		4/25/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D25002		7.6	1		4/25/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D25002		ND	1		4/25/2004	
1,2-Dichloropropane	EPA 8260B	4D25002		ND	1		4/25/2004	
1,3-Dichloropropane	EPA 8260B	4D25002		ND	1		4/25/2004	
2,2-Dichloropropane	EPA 8260B	4D25002		ND	1	4/25/2004	4/25/2004	
1,1-Dichloropropene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
Ethylbenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Hexachlorobutadiene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Isopropylbenzene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
p-lsopropyltoluene	EPA 8260B	4D25002	2 1.0	ND	1	4/25/2004	4/25/2004	
Methylene chloride	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		-	•		-		
Method	I Batch	Reporting Limit	Sample Result			Date Analyzed	Data Qualifiers
5S-061 - Water) -	cont.					•	-
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0		1	4/25/2004	4/25/2004	
EPA 8260B	4D25002			1			
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	2.2	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	73	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
0-120%)			110 %				
			111 %				
-120%)			102 %				
	EPA 8260B EPA 8260B	Method Batch 5S-061 - Water) - cont. 4D25002 EPA 8260B 4D25002	EPA 8260B 4D25002 1.0	Method Batch Limit Result 5S-061 - Water) - cont. EPA 8260B 4D25002 1.0 ND EPA 8260B 4D25002 1.0 ND </td <td>Method Batch Limit Result Factor 5S-061 - Water) - cont. EPA 8260B 4D25002 1.0 ND 1 EPA 8260B<!--</td--><td>Method Batch Limit Result Factor Extracted 5S-061 - Water) - cont. EPA 8260B 4D25002 1.0 ND 1 4/25/2004 EPA 8260B 4D25002 1.0 ND</td><td>Method Batch Limit Result Factor Extracted Analyzed 5S-061 - Water) - cont. SS-061 - Water) - cont. SS-062 - cont. SS</td></td>	Method Batch Limit Result Factor 5S-061 - Water) - cont. EPA 8260B 4D25002 1.0 ND 1 EPA 8260B </td <td>Method Batch Limit Result Factor Extracted 5S-061 - Water) - cont. EPA 8260B 4D25002 1.0 ND 1 4/25/2004 EPA 8260B 4D25002 1.0 ND</td> <td>Method Batch Limit Result Factor Extracted Analyzed 5S-061 - Water) - cont. SS-061 - Water) - cont. SS-062 - cont. SS</td>	Method Batch Limit Result Factor Extracted 5S-061 - Water) - cont. EPA 8260B 4D25002 1.0 ND 1 4/25/2004 EPA 8260B 4D25002 1.0 ND	Method Batch Limit Result Factor Extracted Analyzed 5S-061 - Water) - cont. SS-061 - Water) - cont. SS-062 - cont. SS

el Mar Analytical, Irvine

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Reporting Units: ug/1	Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Reporting Units: ug/ Benzene	•		paten	Limit	Result	, actor	DAUMCICU	7 Hilaly Zee	Quanticis
Bromochoromethane	-	961 - Water)							
Bromochioromethane	Benzene	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
Bromodichloromethane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Bromoform EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Bromomethane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 n-Butylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 terr-Butylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Carbon tetrachloride EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorotehane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorotehane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorotohuene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2-Chiorotohuene EPA 8260B 4D25002	Bromobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Bromoferm	Bromochloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Brommethane	Bromodichloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
n-Butylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 sec-Butylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 tert-Butylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Carbon tetrachloride EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorobenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chloroform EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorofoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 C-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 C-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 L-Chlorotoluene EPA 8260B 4D2	Bromoform	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
sec-Butylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 terr-Butylbenzene EFA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Carbon tetrachloride EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorobenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorochane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorochune EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,2-Diblorotobenzene EPA 8260B <t< td=""><td>Bromomethane</td><td>EPA 8260B</td><td>4D25002</td><td>1.0</td><td>ND</td><td>1</td><td>4/25/2004</td><td>4/25/2004</td><td></td></t<>	Bromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
tert-Butylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Carbon tetrachloride EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Chloroberace EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorotehane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 4-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1-2-Dibromethane EPA 8260B	n-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Carbon tetrachloride EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Chlorobenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chloroform EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chloroform EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 4-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 4-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2-Dibromo-3-chloromethane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,2-Dichlorobethane EPA 8260B	sec-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Chlorobenzene	tert-Butylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Chlorocthane	Carbon tetrachloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
Chloroform	Chlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Chloromethane	Chloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 4-Chlorotoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Dibromochloromethane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,2-Dibromo-3-chloropropane EPA 8260B 4D25002 5.0 ND 1 4/25/2004 4/25/2004 1,2-Dibromoethane (EDB) EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,2-Dichlorobenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,3-Dichlorobenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,4-Dichlorobenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,4-Dichlorobenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,1-Dichlorobenzene<	Chloroform	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
4-Chlorotoluene	Chloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Dibromochloromethane	2-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dibromo-3-chloropropane	4-Chlorotoluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2-Dibromoethane (EDB)	Dibromochloromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Dibromomethane	1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004	
1,2-Dichlorobenzene	1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,3-Dichlorobenzene	Dibromomethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,4-Dichlorobenzene	1,2-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Dichlorodifluoromethane EPA 8260B 4D25002 5.0 ND 1 4/25/2004 4/25/2004 1,1-Dichloroethane EPA 8260B 4D25002 1.0 39 1 4/25/2004 4/25/2004 1,2-Dichloroethane EPA 8260B 4D25002 0.50 5.6 1 4/25/2004 4/25/2004 1,1-Dichloroethene EPA 8260B 4D25002 1.0 4.9 1 4/25/2004 4/25/2004 cis-1,2-Dichloroethene EPA 8260B 4D25002 1.0 10 1 4/25/2004 4/25/2004 1,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,3-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,1-Dichloropropene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 cis-1,3-Dichloropr	1,3-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1-Dichloroethane EPA 8260B 4D25002 1.0 39 1 4/25/2004 4/25/2004 1,2-Dichloroethane EPA 8260B 4D25002 0.50 5.6 1 4/25/2004 4/25/2004 1,1-Dichloroethene EPA 8260B 4D25002 1.0 4.9 1 4/25/2004 4/25/2004 cis-1,2-Dichloroethene EPA 8260B 4D25002 1.0 10 1 4/25/2004 4/25/2004 trans-1,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,1-Dichloropropene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 trans-1,3-Dichlo	1,4-Dichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2-DichloroethaneEPA 8260B4D250020.505.614/25/20044/25/20041,1-DichloroetheneEPA 8260B4D250021.04.914/25/20044/25/2004cis-1,2-DichloroetheneEPA 8260B4D250021.01014/25/20044/25/2004trans-1,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20041,3-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20042,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20042,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20041,1-DichloropropeneEPA 8260B4D250021.0ND14/25/20044/25/2004cis-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004trans-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004EthylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004HexachlorobutadieneEPA 8260B4D250021.0ND14/25/20044/25/2004IsopropylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004p-IsopropyltolueneEPA 8260B4D250021.0ND14/25/20044/25/2004	Dichlorodifluoromethane	EPA 8260B	4D25002	5.0	ND	1	4/25/2004	4/25/2004	
1,1-DichloroetheneEPA 8260B4D250021.04.914/25/20044/25/2004cis-1,2-DichloroetheneEPA 8260B4D250021.01014/25/20044/25/2004trans-1,2-DichloroetheneEPA 8260B4D250021.0ND14/25/20044/25/20041,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20041,3-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20042,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20041,1-DichloropropeneEPA 8260B4D250021.0ND14/25/20044/25/2004cis-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004trans-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004EthylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004HexachlorobutadieneEPA 8260B4D250021.0ND14/25/20044/25/2004IsopropylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004p-IsopropyltolueneEPA 8260B4D250021.0ND14/25/20044/25/2004	1,1-Dichloroethane	EPA 8260B	4D25002	1.0	39	1	4/25/2004	4/25/2004	
cis-1,2-Dichloroethene EPA 8260B 4D25002 1.0 10 1 4/25/2004 4/25/2004 trans-1,2-Dichloroethene EPA 8260B 4D25002 1.0 2.2 1 4/25/2004 4/25/2004 1,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,3-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,1-Dichloropropene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 cis-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 trans-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1	1,2-Dichloroethane	EPA 8260B	4D25002	0.50	5.6	1	4/25/2004	4/25/2004	
trans-1,2-DichloroetheneEPA 8260B4D250021.02.214/25/20044/25/20041,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20041,3-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20042,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20041,1-DichloropropeneEPA 8260B4D250021.0ND14/25/20044/25/2004cis-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004trans-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004EthylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004HexachlorobutadieneEPA 8260B4D250021.0ND14/25/20044/25/2004IsopropylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004p-IsopropyltolueneEPA 8260B4D250021.0ND14/25/20044/25/2004	1,1-Dichloroethene	EPA 8260B	4D25002	1.0	4.9	1	4/25/2004	4/25/2004	
1,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,3-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,1-Dichloropropene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 cis-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 trans-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 <t< td=""><td>cis-1,2-Dichloroethene</td><td>EPA 8260B</td><td>4D25002</td><td>1.0</td><td>10</td><td>1</td><td>4/25/2004</td><td>4/25/2004</td><td></td></t<>	cis-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	10	1	4/25/2004	4/25/2004	
1,3-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 2,2-Dichloropropane EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 1,1-Dichloropropene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 cis-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 trans-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004	trans-1,2-Dichloroethene	EPA 8260B	4D25002	1.0	2.2	1	4/25/2004	4/25/2004	
2,2-DichloropropaneEPA 8260B4D250021.0ND14/25/20044/25/20041,1-DichloropropeneEPA 8260B4D250021.0ND14/25/20044/25/2004cis-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004trans-1,3-DichloropropeneEPA 8260B4D250020.50ND14/25/20044/25/2004EthylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004HexachlorobutadieneEPA 8260B4D250021.0ND14/25/20044/25/2004IsopropylbenzeneEPA 8260B4D250021.0ND14/25/20044/25/2004p-IsopropyltolueneEPA 8260B4D250021.0ND14/25/20044/25/2004	1,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1-Dichloropropene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 cis-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 trans-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004	1,3-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 trans-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004	2,2-Dichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 trans-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004	1,1-Dichloropropene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene EPA 8260B 4D25002 0.50 ND 1 4/25/2004 4/25/2004 Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 P-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004	cis-1,3-Dichloropropene	EPA 8260B	4D25002	0.50	ND	1			
Ethylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004						1			
Hexachlorobutadiene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004	Ethylbenzene								
Isopropylbenzene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004 p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004	-								
p-Isopropyltoluene EPA 8260B 4D25002 1.0 ND 1 4/25/2004 4/25/2004									
									
1000 1000 TILDIANO TI	Methylene chloride	EPA 8260B	4D25002		ND	1			

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0051 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

	OEMILE ONG		y GC/III		0503570	2001)		
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution	Date Extracted	Date Analyzed	Data Qualifiers
•			Simile	resure	T uctor	EAH acted	Amaryzed	Quantiers
ample ID: IND1400-11 (PT	1-MW16-061 - Water) - co	ont.						
Reporting Units: ug/l								
`laphthalene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004	
-Propylbenzene	EPA 8260B	4D25002	1.0	ND	1		4/25/2004	
Styrene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
,1,2,2-Tetrachloroethane	EPA 8260B	4D25002	1.0	ND	- 1	4/25/2004	4/25/2004	
e trachloroethene	EPA 8260B	4D25002	1.0	2.0	1	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
,2,3-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,1-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,1,2-Trichloroethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
richloroethene	EPA 8260B	4D25002	1.0	19	1	4/25/2004	4/25/2004	
Trichlorofluoromethane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
3,5-Trimethylbenzene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	0.50	ND	1	4/25/2004	4/25/2004	
Xylene	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
,p-Xylenes	EPA 8260B	4D25002	1.0	ND	1	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromet				111 %				
Surrogate: Toluene-d8 (80-12				112 %				
irrogate: 4-Bromofluoroben	,			100 %				
in oguic. I Diomojiuoi oven	2010 (00 120/0)			20070				

el Mar Analytical, Irvine

tty Mata

Sampled: 04/21/04

Camp, Dresser & McKee 18581 Teller Avenue, #200 Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Irvine, CA 92612 Attention: Sharon Wallin Report Number: IND1400 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			Reporting		Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IND1400-12 (PTI-MW3 Reporting Units: ug/l	37-061 - Water)							
Benzene	EPA 8260B	4D26008	1.0	ND	2	4/26/2004	4/26/2004	
Bromobenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Bromochloromethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Bromodichloromethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Bromoform	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Bromomethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
n-Butylbenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
sec-Butylbenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
tert-Butylbenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Carbon tetrachloride	EPA 8260B	4D26008	1.0	ND	2	4/26/2004	4/26/2004	
Chlorobenzene	EPA 8260B	4D26008	2.0	2.2	2	4/26/2004	4/26/2004	
Chloroethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Chloroform	EPA 8260B	4D26008	2.0	76	2	4/26/2004	4/26/2004	
Chloromethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
2-Chlorotoluene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
4-Chlorotoluene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Dibromochloromethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D26008	10	ND	2	4/26/2004	4/26/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Dibromomethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,2-Dichlorobenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,3-Dichlorobenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,4-Dichlorobenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Dichlorodifluoromethane	EPA 8260B	4D26008	10	ND	2	4/26/2004	4/26/2004	
1,1-Dichloroethane	EPA 8260B	4D26008	2.0	190	2	4/26/2004	4/26/2004	
1,2-Dichloroethane	EPA 8260B	4D26008	1.0	28	2	4/26/2004	4/26/2004	
1,1-Dichloroethene	EPA 8260B	4D26008	2.0	68	2	4/26/2004	4/26/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D26008	2.0	7 .8	2	4/26/2004	4/26/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,2-Dichloropropane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,3-Dichloropropane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
2,2-Dichloropropane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,1-Dichloropropene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D26008	1.0	ND	2	4/26/2004	4/26/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D26008	1.0	ND	2	4/26/2004	4/26/2004	
Ethylbenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Hexachlorobutadiene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Isopropylbenzene	EPA 8260B	4D26008	2.0	ND	2		4/26/2004	
p-Isopropyltoluene	EPA 8260B	4D26008	2.0	ND	2		4/26/2004	
Methylene chloride	EPA 8260B	4D26008		70	2		4/26/2004	
•								

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (868) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

_		1	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result		Extracted		Qualifiers
mple ID: IND1400-12 (PTI-MW37-06	61 - Water) - co	ont.						
Reporting Units: ug/l								
aphthalene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Propylbenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Styrene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1.1,1,2-Tetrachloroethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
T etrachloroethene	EPA 8260B	4D26008	2.0	6.8	2	4/26/2004	4/26/2004	
Toluene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
2,3-Trichlorobenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
2,4-Trichlorobenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
1,1,1-Trichloroethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
¹ 1,2-Trichloroethane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
richloroethene	EPA 8260B	4D26008	2.0	220	2	4/26/2004	4/26/2004	
Trichlorofluoromethane	EPA 8260B	4D26008	2.0	ND	2		4/26/2004	
1,2,3-Trichloropropane	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
2,4-Trimethylbenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
3,5-Trimethylbenzene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Vinyl chloride	EPA 8260B	4D26008	1.0	ND	2	4/26/2004	4/26/2004	
Xylene	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
p-Xylenes	EPA 8260B	4D26008	2.0	ND	2	4/26/2004	4/26/2004	
Surrogate: Dibromofluoromethane (80-12	0%)			108 %				
Surrogate: Toluene-d8 (80-120%)				109 %				
rrogate: 4-Bromofluorobenzene (80-12)	0%)			102 %				

el Mar Analytical, Irvine

mtty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200 Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Irvine, CA 92612 Attention: Sharon Wallin

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

VOLATILE ORGANICS by GC/MS (ET A 5050D/0200D)										
			Reporting		Dilution		Date	Data		
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers		
Sample ID: IND1400-13 (PTI-MW09-0	61 - Water)									
Reporting Units: ug/l										
Benzene	EPA 8260B	4D26019	1.0	ND	2		4/27/2004			
Bromobenzene	EPA 8260B	4D26019	2.0	ND	2		4/27/2004			
Bromochloromethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Bromodichloromethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Bromoform	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Bromomethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
n-Butylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
sec-Butylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
tert-Butylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Carbon tetrachloride	EPA 8260B	4D26019	1.0	ND	2	4/26/2004	4/27/2004			
Chlorobenzene	EPA 8260B	4D26019	2.0	2.1	2	4/26/2004	4/27/2004			
Chloroethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Chloroform	EPA 8260B	4D26019	2.0	73	2	4/26/2004	4/27/2004			
Chloromethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
2-Chlorotoluene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
4-Chlorotoluene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	-		
Dibromochloromethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
1,2-Dibromo-3-chloropropane	EPA 8260B	4D26019	10	ND	2	4/26/2004	4/27/2004			
1,2-Dibromoethane (EDB)	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Dibromomethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
1,2-Dichlorobenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
1,3-Dichlorobenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
1,4-Dichlorobenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Dichlorodifluoromethane	EPA 8260B	4D26019	10	ND	2	4/26/2004	4/27/2004			
1,1-Dichloroethane	EPA 8260B	4D26019	2.0	200	2	4/26/2004	4/27/2004			
1,2-Dichloroethane	EPA 8260B	4D26019	1.0	30	2	4/26/2004	4/27/2004			
1,1-Dichloroethene	EPA 8260B	4D26019	2.0	62	2	4/26/2004	4/27/2004			
cis-1,2-Dichloroethene	EPA 8260B	4D26019	2.0	7.7	2	4/26/2004	4/27/2004			
trans-1,2-Dichloroethene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
1,2-Dichloropropane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
1,3-Dichloropropane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
2,2-Dichloropropane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
1,1-Dichloropropene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
cis-1,3-Dichloropropene	EPA 8260B	4D26019	1.0	ND	2	4/26/2004	4/27/2004			
trans-1,3-Dichloropropene	EPA 8260B	4D26019	1.0	ND	2	4/26/2004	4/27/2004			
Ethylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Hexachlorobutadiene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Isopropylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
p-Isopropyltoluene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004			
Methylene chloride	EPA 8260B	4D26019	10	71	2	4/26/2004	4/27/2004			

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

Project ID: PTI, Phibro-Tech 2279

18581 Teller Avenue, #200

PhibroTech, April 2004

Irvine, CA 92612 Attention: Sharon Wallin

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			Reporting	_	Dilution		Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
mample ID: IND1400-13 (PTI-M	W09-061 - Water) - co	ont.						
Reporting Units: ug/l								
aphthalene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
Propylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
Styrene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
¹ 1,1,2-Tetrachloroethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
Tetrachloroethene	EPA 8260B	4D26019	2.0	5.4	2	4/26/2004	4/27/2004	
Toluene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
2,3-Trichlorobenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
2,4-Trichlorobenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
1,1,1-Trichloroethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
1,2-Trichloroethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
richloroethene	EPA 8260B	4D26019	2.0	190	2	4/26/2004	4/27/2004	
Trichlorofluoromethane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
1.2,3-Trichloropropane	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
2,4-Trimethylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
3,5-Trimethylbenzene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
Vinyl chloride	EPA 8260B	4D26019	1.0	ND	2	4/26/2004	4/27/2004	
Xylene	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
p-Xylenes	EPA 8260B	4D26019	2.0	ND	2	4/26/2004	4/27/2004	
Surrogate: Dibromofluoromethane	(80-120%)			114 %				
Surrogate: Toluene-d8 (80-120%)				109 %				
rrogate: 4-Bromofluorobenzene	(80-120%)			110 %				

el Mar Analytical, Irvine

Patty Mata

18581 Teller Avenue, #200

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 (1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9699 9830 South 51st St., Suite B-120, Phoenix, AZ 65044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Irvine, CA 92612 Report Number: IND1400 Attention: Sharon Wallin

Sampled: 04/21/04 Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1400-14 (PTI-MW) Reporting Units: ug/l	11-061 - Water)							
Benzene	EPA 8260B	4D25002	1.0	ND	2	4/25/2004	4/25/2004	
Bromobenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Bromochloromethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Bromodichloromethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Bromoform	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Bromomethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
n-Butylbenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
sec-Butylbenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
tert-Butylbenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Carbon tetrachloride	EPA 8260B	4D25002	1.0	ND	2	4/25/2004	4/25/2004	
Chlorobenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Chloroethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Chloroform	EPA 8260B	4D25002		6.2	2	4/25/2004	4/25/2004	
Chloromethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
2-Chlorotoluene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
4-Chlorotoluene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Dibromochloromethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,2-Dibromo-3-chloropropane	EPA 8260B	4D25002	10	ND	2	4/25/2004	4/25/2004	
1,2-Dibromoethane (EDB)	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Dibromomethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,2-Dichlorobenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,3-Dichlorobenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,4-Dichlorobenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Dichlorodifluoromethane	EPA 8260B	4D25002	10	ND	2	4/25/2004	4/25/2004	
1,1-Dichloroethane	EPA 8260B	4D25002	2.0	40	2	4/25/2004	4/25/2004	
1,2-Dichloroethane	EPA 8260B	4D25002	1.0	24	2	4/25/2004	4/25/2004	
1,1-Dichloroethene	EPA 8260B	4D25002	2.0	16	2	4/25/2004	4/25/2004	
cis-1,2-Dichloroethene	EPA 8260B	4D25002	2.0	8.2	2	4/25/2004	4/25/2004	
trans-1,2-Dichloroethene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,2-Dichloropropane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,3-Dichloropropane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
2,2-Dichloropropane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,1-Dichloropropene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
cis-1,3-Dichloropropene	EPA 8260B	4D25002	1.0	ND	2	4/25/2004	4/25/2004	
trans-1,3-Dichloropropene	EPA 8260B	4D25002	1.0	ND	2	4/25/2004	4/25/2004	
Ethylbenzene	EPA 8260B	4D25002	2.0	3.6	2	4/25/2004	4/25/2004	
Hexachlorobutadiene	EPA 8260B	4D25002		ND	2		4/25/2004	
Isopropylbenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
p-Isopropyltoluene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Methylene chloride	EPA 8260B	4D25002		ND	2	4/25/2004	4/25/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
ample ID: IND1400-14 (PTI-M	W11-061 - Water) - co	ont.						
Reporting Units: ug/l	,							
`aphthalene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Propylbenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Styrene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,1,1,2-Tetrachloroethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,2,2-Tetrachloroethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
# etrachloroethene	EPA 8260B	4D25002	2.0	3.3	2	4/25/2004	4/25/2004	
Toluene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
2,3-Trichlorobenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
2,4-Trichlorobenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,1,1-Trichloroethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
¹ 1,2-Trichloroethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
richloroethene	EPA 8260B	4D25002	2.0	250	2	4/25/2004	4/25/2004	
Trichlorofluoromethane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
1,2,3-Trichloropropane	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
2,4-Trimethylbenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
3,5-Trimethylbenzene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Vinyl chloride	EPA 8260B	4D25002	1.0	ND	2	4/25/2004	4/25/2004	
Xylene	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
p-Xylenes	EPA 8260B	4D25002	2.0	ND	2	4/25/2004	4/25/2004	
Surrogate: Dibromofluoromethand	e (80-120%)			112 %				
Surrogate: Toluene-d8 (80-120%)				110 %				
ırrogate: 4-Bromofluorobenzene				100 %				

el Mar Analytical, Irvine

atty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 (1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue #200

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

DISSOLVED METALS

	DIGGOEVED METAES									
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IND1400-02 (PTI-MW0	7-061 - Water)									
Reporting Units: mg/l										
Cadmium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/27/2004			
Chromium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/27/2004			
Copper	EPA 6010B-Diss	4D23066	0.010	ND	1	4/23/2004	4/27/2004			
Sample ID: IND1400-03 (PTI-DI-06	1 - Water)									
Reporting Units: mg/l	2 ((1102)									
Cadmium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004			
Chromium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004			
Copper	EPA 6010B-Diss	4D23066	0.010	ND	1	4/23/2004	4/26/2004			
Sample ID: IND1400-04 (PTI-MW1	4S-061 - Water)									
Reporting Units: mg/l	is our viacely									
Cadmium	EPA 6010B-Diss	4D23066	0.010	ND	2	4/23/2004	4/26/2004	RL-1		
Chromium	EPA 6010B-Diss	4D23066	0.010	0.31	2		4/26/2004			
Copper	EPA 6010B-Diss	4D23066	0.020	0.023	2	4/23/2004	4/26/2004			
Sample ID: IND1400-05 (PTI-MW0	4A-061 - Water)									
Reporting Units: mg/l	,									
Cadmium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004			
Chromium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004			
Copper	EPA 6010B-Diss	4D23066	0.010	0.045	1	4/23/2004	4/26/2004			
Sample ID: IND1400-06 (PTI-MW3	5-061 - Water)									
Reporting Units: mg/l										
Cadmium	EPA 6010B-Diss	4D23066	0.020	0.34	4	4/23/2004	4/26/2004			
Chromium	EPA 6010B-Diss	4D23066	0.020	23	4	4/23/2004	4/26/2004			
Copper	EPA 6010B-Diss	4D23066	0.040	ND	4	4/23/2004	4/26/2004	RL-1		
Sample ID: IND1400-07 (PTI-MW0	4-061 - Water)									
Reporting Units: mg/l										
Cadmium	EPA 6010B-Diss	4D23066	0.015	0.29	3	4/23/2004	4/26/2004			
Chromium	EPA 6010B-Diss	4D23066	0.015	20	3	4/23/2004	4/26/2004			
Copper	EPA 6010B-Diss	4D23066	0.030	ND	3	4/23/2004	4/26/2004	RL-1		
Sample ID: IND1400-08 (PTI-EB02	-061 - Water)									
Reporting Units: mg/l	•									
Cadmium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004			
Chromium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004			
Copper	EPA 6010B-Diss	4D23066	0.010	ND	1	4/23/2004	4/26/2004			

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3620

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

DISSOLVED METALS

	Δ,							
Analyte	Method	l Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
mample ID: IND1400-09 (PTI-MV	/15D-061 - Water)						-	-
Reporting Units: mg/l	(13D-001 - Water)							
Cadmium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004	
hromium	EPA 6010B-Diss	4D23066	0.0050	0.0067	1	4/23/2004	4/26/2004	
Copper	EPA 6010B-Diss	4D23066	0.010	ND	1	4/23/2004	4/26/2004	
Cample ID: IND1400-10 (PTI-MW Reporting Units: mg/l	/15S-061 - Water)							
Cadmium	EPA 6010B-Diss	4D23066	0.0050	0.0077	1	4/23/2004	4/26/2004	
Chromium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004	
opper	EPA 6010B-Diss		0.010	ND	1	4/23/2004	4/26/2004	
Sample ID: IND1400-11 (PTI-MW	/16-061 - Water)							
Reporting Units: mg/l								
admium	EPA 6010B-Diss		0.0050	ND	1		4/26/2004	
hromium	EPA 6010B-Diss		0.0050	ND	1		4/26/2004	
Copper	EPA 6010B-Diss	4D23066	0.010	ND	1	4/23/2004	4/26/2004	
ample ID: IND1400-12 (PTI-MW Reporting Units: mg/l	/37-061 - Water)							
Cadmium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004	
Chromium	EPA 6010B-Diss		0.0050	4.4	1		4/26/2004	
opper	EPA 6010B-Diss		0.010	ND	1		4/26/2004	
Sample ID: IND1400-13 (PTI-MW	/09-061 - Water)							
Reporting Units: mg/l								
admium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004	
C hromium	EPA 6010B-Diss	4D23066	0.0050	3.4	1	4/23/2004	4/26/2004	
Copper	EPA 6010B-Diss	4D23066	0.010	ND	1	4/23/2004	4/26/2004	
ample ID: IND1400-14 (PTI-MW Reporting Units: mg/l	/11-061 - Water)							
Cadmium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004	
hromium	EPA 6010B-Diss	4D23066	0.0050	ND	1	4/23/2004	4/26/2004	
ppper	EPA 6010B-Diss	4D23066	0.010	ND	1	4/23/2004	4/26/2004	

el Mar Analytical, Irvine

atty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9699 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

		INOR	GANICS					
Analyte	Method	l Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1400-02 (PTI-MW07-0 Reporting Units: mg/l	061 - Water)							
Chromium VI	EPA 7199	4D21099	0.0010	ND	1	4/21/2004	4/22/2004	M2
Sample ID: IND1400-02 (PTI-MW07-0 Reporting Units: pH Units	061 - Water)							
pН	EPA 150.1	4D22061	NA	7.35	1	4/22/2004	4/22/2004	
Sample ID: IND1400-03 (PTI-DI-061 - Reporting Units: mg/l	Water)							
Chromium VI	EPA 7199	4D21099	0.0010	ND	1	4/21/2004	4/22/2004	
Sample ID: IND1400-03 (PTI-DI-061 - Reporting Units: pH Units	Water)							
pH	EPA 150.1	4D22061	NA	6.18	1	4/22/2004	4/22/2004	
Sample ID: IND1400-04 (PTI-MW14S Reporting Units: mg/l	-061 - Water)							
Chromium VI	EPA 7199	4D21099	0.010	0.33	10	4/21/2004	4/22/2004	
Sample ID: IND1400-04 (PTI-MW14S Reporting Units: pH Units	-061 - Water)							
pН	EPA 150.1	4D22061	NA	7.01	1	4/22/2004	4/22/2004	
Sample ID: IND1400-05 (PTI-MW04A Reporting Units: mg/l	-061 - Water)							
Chromium VI	EPA 7199	4D21099	0.0010	0.0056	1	4/21/2004	4/22/2004	
Sample ID: IND1400-05 (PTI-MW04A Reporting Units: pH Units	-061 - Water)							
pН	EPA 150.1	4D22061	NA	7.59	1	4/22/2004	4/22/2004	
Sample ID: IND1400-06 (PTI-MW35-0 Reporting Units: mg/l	061 - Water)							
Chromium VI	EPA 7199	4D21099	0.50	28	500	4/21/2004	4/22/2004	
Sample ID: IND1400-06 (PTI-MW35-0 Reporting Units: pH Units)61 - Water)							
рН	EPA 150.1	4D22061	NA	6.83	1	4/22/2004	4/22/2004	

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Attention: Sharon Wallin

Irvine, CA 92612

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

•		INOR	GANICS					
Analyte	Method	I Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
ample ID: IND1400-07 (PTI-MW04	4-061 - Water)							
Reporting Units: mg/l	FD + 5100	4724000	0.50	•	500	4/21/2004	4/22/2004	
hromium VI	EPA 7199	4D21099	0.50	24	500	4/21/2004	4/22/2004	
Reporting Units: pH Units	4-061 - Water)							
~H	EPA 150.1	4D22061	NA	6.88	1	4/22/2004	4/22/2004	
ample ID: IND1400-08 (PTI-EB02- Reporting Units: mg/l	061 - Water)							
Chromium VI	EPA 7199	4D21099	0.0010	ND	1	4/21/2004	4/22/2004	
ample ID: IND1400-08 (PTI-EB02- Reporting Units: pH Units	061 - Water)							
nΗ	EPA 150.1	4D22061	NA	7.81	1	4/22/2004	4/22/2004	
mple ID: IND1400-09 (PTI-MW15 Reporting Units: mg/l	5D-061 - Water)							
Chromium VI	EPA 7199	4D21099	0.0010	0.0070	1	4/21/2004	4/22/2004	
ample ID: IND1400-09 (PTI-MW15 Reporting Units: pH Units	5D-061 - Water)							
pH	EPA 150.1	4D22061	NA	7.60	1	4/22/2004	4/22/2004	
mple ID: IND1400-10 (PTI-MW15 Reporting Units: mg/l	5S-061 - Water)							
Chromium VI	EPA 7199	4D21099	0.0010	ND	1	4/21/2004	4/22/2004	
ample ID: IND1400-10 (PTI-MW15	5S-061 - Water)							
Reporting Units: pH Units	EDA 150 1	4D22061	NIA	7.37		4/22/2004	4/22/2004	
рН	EPA 150.1	4D22061	NA	1.37	1	4/22/2004	4/22/2004	
mple ID: IND1400-11 (PTI-MW10 Reporting Units: mg/l								
Chromium VI	EPA 7199	4D21099	0.0010	ND	1	4/21/2004	4/22/2004	
mple ID: IND1400-11 (PTI-MW16 Reporting Units: pH Units								
рН	EPA 150.1	4D22061	NA	7.21	1	4/22/2004	4/22/2004	

el Mar Analytical, Irvine

eatty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9699 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

			GANICS			_	_	_
Analyte	Method	F Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND1400-12 (PTI-MW37-0 Reporting Units: mg/l	61 - Water)							
Chromium VI	EPA 7199	4D21099	0.10	4.1	100	4/21/2004	4/22/2004	
Sample ID: IND1400-12 (PTI-MW37-0 Reporting Units: pH Units	61 - Water)							
pH	EPA 150.1	4D22061	NA	6.96	1	4/22/2004	4/22/2004	
Sample ID: IND1400-13 (PTI-MW09-0 Reporting Units: mg/l	61 - Water)							
Chromium VI	EPA 7199	4D21099	0.10	2.9	100	4/21/2004	4/22/2004	
Sample ID: IND1400-13 (PTI-MW09-0 Reporting Units: pH Units	61 - Water)							
pH	EPA 150.1	4D22061	NA	6.87	1	4/22/2004	4/22/2004	
Sample ID: IND1400-14 (PTI-MW11-0 Reporting Units: mg/l	61 - Water)							
Chromium VI	EPA 7199	4D21099	0.0010	ND	1	4/21/2004	4/22/2004	
Sample ID: IND1400-14 (PTI-MW11-0 Reporting Units: pH Units	61 - Water)							
рН	EPA 150.1	4D22061	NA	7.29	1	4/22/2004	4/22/2004	

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

SHORT HOLD TIME DETAIL REPORT

•	Hold Time	Date/Time	Date/Time	Date/Time	Date/Time
	(in days)	Sampled	Received	Extracted	Analyzed
Sample ID: PTI-MW07-061 (IND1400-	-02) - Water	-			
EPA 150.1	1	04/21/2004 08:05	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 08:05	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 01:37
Sample ID: PTI-DI-061 (IND1400-03)	- Water				
EPA 150.1	1	04/21/2004 08:45	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 08:45	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 02:06
Sample ID: PTI-MW14S-061 (IND140	0-04) - Water				
EPA 150.1	1	04/21/2004 09:00	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 09:00	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 02:16
Gample ID: PTI-MW04A-061 (IND140	0-05) - Water				
EPA 150.1	1	04/21/2004 10:00	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 10:00	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 02:25
Sample ID: PTI-MW35-061 (IND1400	-06) - Water				
EPA 150.1	1	04/21/2004 09:45	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 09:45	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 02:35
Sample ID: PTI-MW04-061 (IND1400-	-07) - Water				
EPA 150.1	1	04/21/2004 10:45	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
≟ PA 7199	1	04/21/2004 10:45	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 02:44
Sample ID: PTI-EB02-061 (IND1400-0	8) - Water				0.4.10.2.10.00.4.00.00
EPA 150.1	1	04/21/2004 11:00	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 11:00	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 02:54
Sample ID: PTI-MW15D-061 (IND140	0-09) - Water				0.4/0.0/0.004.00.00
EPA 150.1	1	04/21/2004 11:40	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 11:40	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 03:04
Sample ID: PTI-MW15S-061 (IND140			0.1/01/000115-05	0.4/0.0/0.004.07.00	04/22/2004 00:00
EPA 150.1	1	04/21/2004 12:55	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
EPA 7199	1	04/21/2004 12:55	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 03:32
ample ID: PTI-MW16-061 (IND1400	-11) - Water	0.4/0.4/0.004.40.05	04/01/0004 15 25	04/02/2004 07:00	04/22/2004 09:00
EPA 150.1	1	04/21/2004 13:35	04/21/2004 17:35	04/22/2004 07:00 04/21/2004 19:28	04/22/2004 09:00
EPA 7199	1	04/21/2004 13:35	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 03.42
ample ID: PTI-MW37-061 (IND1400		04/01/0004 12:50	04/21/2004 17:25	04/22/2004 07:00	04/22/2004 09:00
EPA 150.1	1	04/21/2004 13:50	04/21/2004 17:35 04/21/2004 17:35	04/21/2004 19:28	04/22/2004 03:52
EPA 7199	1	04/21/2004 13:50	04/21/2004 17:33	04/21/2004 19.26	04/22/2004 03.32
ample ID: PTI-MW09-061 (IND1400		04/21/2004 14:15	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
■PA 150.1	1	04/21/2004 14:15	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 04:01
EPA 7199	14) 37/-4	04/21/2004 14:15	04/21/2004 17.33	UT/21/20UT 19.20	01/22/2007 07.01
ample ID: PTI-MW11-061 (IND1400	-14) - Water	04/21/2004 14:50	04/21/2004 17:35	04/22/2004 07:00	04/22/2004 09:00
PA 150.1	1	04/21/2004 14:50	04/21/2004 17:35	04/21/2004 19:28	04/22/2004 04:11
EPA 7199	1	04/21/2004 14.30	04/21/2004 17.33	07/21/2007 19.20	5 1/22/2007 6 1.11

el Mar Analytical, Irvine

tty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	ì
Batch: 4D25002 Extracted: 04/2	25/04				7						
Blank Analyzed: 04/25/04 (4D2:	5002-BLK1)										í
Benzene	ND	0.50	ug/l								
Bromobenzene	ND	1.0	ug/l								i
Bromochloromethane	ND	1.0	ug/l								1
Bromodichloromethane	ND	1.0	ug/l								١
Bromoform	ND	1.0	ug/l								
Bromomethane	ND	1.0	ug/l								
n-Butylbenzene	ND	1.0	ug/l								1
sec-Butylbenzene	ND	1.0	ug/l								
tert-Butylbenzene	ND	1.0	ug/l								
Carbon tetrachloride	ND	0.50	ug/l								i
Chlorobenzene	ND	1.0	ug/l								
Chloroethane	ND	1.0	ug/l								
Chloroform	ND	1.0	ug/l								
Chloromethane	ND	1.0	ug/l								
2-Chlorotoluene	ND	1.0	ug/l								
4-Chlorotoluene	ND	1.0	ug/l								
Dibromochloromethane	ND	1.0	ug/l								
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l								
1,2-Dibromoethane (EDB)	ND	1.0	ug/l								
Dibromomethane	ND	1.0	ug/l								
1,2-Dichlorobenzene	ND	1.0	ug/l								
1,3-Dichlorobenzene	ND	1.0	ug/l								
1,4-Dichlorobenzene	ND	1.0	ug/l								
Dichlorodifluoromethane	ND	5.0	ug/l								
1,1-Dichloroethane	ND	1.0	ug/l								
1,2-Dichloroethane	ND	0.50	ug/l								
1,1-Dichloroethene	ND	1.0	ug/l								
cis-1,2-Dichloroethene	ND	1.0	ug/l								
trans-1,2-Dichloroethene	ND	1.0	ug/l								
1,2-Dichloropropane	ND	1.0	ug/l								
1,3-Dichloropropane	ND	1.0	ug/l								
2,2-Dichloropropane	ND	1.0	ug/l								
1,1-Dichloropropene	ND	1.0	ug/l								
cis-1,3-Dichloropropene	ND	0.50	ug/l								
trans-1,3-Dichloropropene	ND	0.50	ug/l								
Del Mar Analytical Irvine			J								

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0852 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

• .	.	Reporting		Spike	Source		%REC		RPD	Data
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D25002 Extracted: 04	/25/04									
lank Analyzed: 04/25/04 (4D2	25002-BLK1)									
Ethylbenzene	ND	1.0	ug/l							
Hexachlorobutadiene	ND	1.0	ug/l							
opropylbenzene	ND	1.0	ug/l							
PIsopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
aphthalene	ND	1.0	ug/l							
Propylbenzene	ND	1.0	ug/l							
Styrene	ND	1.0	ug/l							
1,1,2-Tetrachloroethane	ND	1.0	ug/l							
1,2,2-Tetrachloroethane	ND	1.0	ug/l							
Tetrachloroethene	ND	1.0	ug/l							
Toluene	ND	1.0	ug/l							
2,3-Trichlorobenzene	ND	1.0	ug/l							
,4-Trichlorobenzene	ND	1.0	ug/l							
1,1,1-Trichloroethane	ND	1.0	ug/l							
,2-Trichloroethane	ND	1.0	ug/l							
ichloroethene	ND	1.0	ug/l							
Trichlorofluoromethane	ND	1.0	ug/l							
1 ?,3-Trichloropropane	ND	1.0	ug/l							
!,4-Trimethylbenzene	ND	1.0	ug/l							
7,3,5-Trimethylbenzene	ND	1.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylene	ND	1.0	ug/l							
p-Xylenes	ND	1.0	ug/l							
Surrogate: Dibromofluoromethane	26.1		ug/l	25.0		104	80-120			
~ rrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
rrogate: 4-Bromofluorobenzene	25.8		ug/l	25.0		103	80-120			

el Mar Analytical, Irvine

Ltty Mata

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	Ì
Batch: 4D25002 Extracted: 04/2	5/04										
Saturday Daniel Car. Viiz	5,04										
LCS Analyzed: 04/25/04 (4D250	02-BS1)										í
Benzene	22.0	0.50	ug/l	25.0		88	70-120				
Bromobenzene	25.8	1.0	ug/l	25.0		103	80-120				
Bromochloromethane	23.3	1.0	ug/l	25.0		93	65-135				
Bromodichloromethane	25.9	1.0	ug/l	25.0		104	70-140				•
Bromoform	28.3	1.0	ug/l	25.0		113	50-135				
Bromomethane	24.6	1.0	ug/l	25.0		98	60-140				
n-Butylbenzene	24.5	1.0	ug/l	25.0		98	75-130				į
sec-Butylbenzene	23.8	1.0	ug/l	25.0		95	75-125				
tert-Butylbenzene	24.4	1.0	ug/l	25.0		98	75-125				
Carbon tetrachloride	26.8	0.50	ug/l	25.0		107	70-140				
Chlorobenzene	24.6	1.0	ug/l	25.0		98	80-125				
Chloroethane	19.0	1.0	ug/l	25.0		76	60-145				
Chloroform	22.4	1.0	ug/l	25.0		90	70-130				
Chloromethane	16.2	1.0	ug/l	25.0		65	40-145				
2-Chlorotoluene	23.0	1.0	ug/l	25.0		92	75-125				
4-Chlorotoluene	23.6	1.0	ug/l	25.0		94	75-125				
Dibromochloromethane	26.4	1.0	ug/l	25.0		106	65-145				
1,2-Dibromo-3-chloropropane	27.7	5.0	ug/l	25.0		111	50-130				
1,2-Dibromoethane (EDB)	26.6	1.0	ug/l	25.0		106	70-125				
Dibromomethane	26.8	1.0	ug/l	25.0		107	70-130				
1,2-Dichlorobenzene	27.0	1.0	ug/l	25.0		108	75-120				
1,3-Dichlorobenzene	25.8	1.0	ug/l	25.0		103	75-120				
1,4-Dichlorobenzene	26.4	1.0	ug/l	25.0		106	80-120				
Dichlorodifluoromethane	21.1	5.0	ug/l	25.0		84	10-160				
1,1-Dichloroethane	19.8	1.0	ug/l	25.0		79	70-135				
1,2-Dichloroethane	23.4	0.50	ug/l	25.0		94	60-150				
1,1-Dichloroethene	22.1	1.0	ug/l	25.0		88	75-140				
cis-1,2-Dichloroethene	21.3	1.0	ug/l	25.0		85	65-125				
trans-1,2-Dichloroethene	22.0	1.0	ug/l	25.0		88	65-130				
1,2-Dichloropropane	21.5	1.0	ug/l	25.0		86	65-120				
1,3-Dichloropropane	25.1	1.0	ug/l	25.0		100	70-130				
2,2-Dichloropropane	19.6	1.0	ug/l	25.0		78	70-150				
1,1-Dichloropropene	23.1	1.0	ug/l	25.0		92	75-130				
cis-1,3-Dichloropropene	24.0	0.50	ug/l	25.0		96	70-130				
trans-1,3-Dichloropropene	25.4	0.50	ug/l	25.0		102	75-135				
and a second property	~	0.50	45/1	23.0		102	13-133				

Del Mar Analytical, Irvine

Patty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
\nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D25002 Extracted: 04/2	25/04									
CS Analyzed: 04/25/04 (4D250	002-BS1)									
Thylbenzene	23.3	1.0	ug/l	25.0		93	80-120			
Hexachlorobutadiene	28.8	1.0	ug/l	25.0		115	65-140			
opropylbenzene	24.0	1.0	ug/l	25.0		96	70-125			
Isopropyltoluene	23.8	1.0	ug/l	25.0		95	75-125			
Methylene chloride	23.1	5.0	ug/l	25.0		92	60-135			
``aphthalene	29.2	1.0	ug/l	25.0		117	50-145			
Propylbenzene	23.7	1.0	ug/l	25.0		95	75-130			
Styrene	24.0	1.0	ug/l	25.0		96	80-135			
1.1,1,2-Tetrachloroethane	26.9	1.0	ug/l	25.0		108	70-145			
1,2,2-Tetrachloroethane	28.2	1.0	ug/l	25.0		113	60-135			
**etrachloroethene	25.9	1.0	ug/l	25.0		104	75-125			
Toluene	22.1	1.0	ug/l	25.0		88	70-120			
2,3-Trichlorobenzene	30.7	1.0	ug/l	25.0		123	65-135			
2,4-Trichlorobenzene	30.2	1.0	ug/l	25.0		121	70-140			
1,1,1-Trichloroethane	21.8	1.0	ug/l	25.0		87	75-140			
1 1,2-Trichloroethane	26.3	1.0	ug/l	25.0		105	65-125			
ichloroethene	24.9	1.0	ug/l	25.0		100	75-120			
Trichlorofluoromethane	22.8	1.0	ug/l	25.0		91	60-145			
1,2,3-Trichloropropane	27.1	1.0	ug/l	25.0		108	60-130			
2,4-Trimethylbenzene	23.0	1.0	ug/l	25.0		92	75-125			
3,5-Trimethylbenzene	23.2	1.0	ug/l	25.0		93	75-125			
Vinyl chloride	20.5	0.50	ug/l	25.0		82	50-125			
Xylene	22.9	1.0	ug/l	25.0		92	75-125			
p-Xylenes	46.0	1.0	ug/l	50.0		92	70-120			
Surrogate: Dibromofluoromethane	26.0		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120			
rrogate: 4-Bromofluorobenzene	25.5		ug/l	25.0		102	80-120			

Tel Mar Analytical, Irvine

itty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-95689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level		%REC	%REC	RPD	RPD Limit	Data Qualifiers	
•		233334	011110	20.0	2100111	,0122					
Batch: 4D25002 Extracted: 04/2	<u>5/04</u>										
Matrix Spike Analyzed: 04/25/04	(4D25002-M	IS1)			Source:	IND1400	-02				
Benzene	25.6	0.50	ug/l	25.0	ND	102	70-120				
Bromobenzene	26.8	1.0	ug/l	25.0	ND	107	60-135				
Bromochloromethane	27.8	1.0	ug/l	25.0	ND	111	60-140				
Bromodichloromethane	28.6	1.0	ug/l	25.0	ND	114	70-140				
Bromoform	31.2	1.0	ug/l	25.0	ND	125	50-135				
Bromomethane	29.3	1.0	ug/l	25.0	ND	117	50-140				
n-Butylbenzene	24.9	1.0	ug/l	25.0	ND	100	70-135				
sec-Butylbenzene	24.4	1.0	ug/l	25.0	ND	98	70-130				
tert-Butylbenzene	25.2	1.0	ug/l	25.0	ND	101	70-130				
Carbon tetrachloride	30.6	0.50	ug/l	25.0	ND	122	70-140				
Chlorobenzene	26.4	1.0	ug/l	25.0	ND	106	80-125				
Chloroethane	22.5	1.0	ug/l	25.0	ND	90	50-145				
Chloroform	26.2	1.0	ug/l	25.0	ND	105	70-130				
Chloromethane	20.3	1.0	ug/l	25.0	ND	81	30-145				
2-Chlorotoluene	24.2	1.0	ug/l	25.0	ND	97	65-145				
4-Chlorotoluene	24.7	1.0	ug/l	25.0	ND	99	70-145				
Dibromochloromethane	28.4	1.0	ug/l	25.0	ND	114	65-145				
1,2-Dibromo-3-chloropropane	33.2	5.0	ug/l	25.0	ND	133	50-150				
1,2-Dibromoethane (EDB)	30.5	1.0	ug/l	25.0	ND	122	70-125				
Dibromomethane	31.7	1.0	ug/l	25.0	ND	127	65-135				
1,2-Dichlorobenzene	27.9	1.0	ug/l	25.0	ND	112	70-130				
1,3-Dichlorobenzene	26.4	1.0	ug/l	25.0	ND	106	70-130				
1,4-Dichlorobenzene	27.1	1.0	ug/l	25.0	ND	108	75-120				
Dichlorodifluoromethane	32.7	5.0	ug/l	25.0	ND	131	10-160				
1,1-Dichloroethane	37.0	1.0	ug/l	25.0	14	92	65-135				
1,2-Dichloroethane	30.6	0.50	ug/l	25.0	3.4	109	60-150				
1,1-Dichloroethene	29.3	1.0	ug/l	25.0	1.4	112	65-145				
cis-1,2-Dichloroethene	29.5	1.0	ug/I	25.0	4.4	100	60-130				
trans-1,2-Dichloroethene	27.2	1.0	ug/l	25.0	ND	109	60-135				
1,2-Dichloropropane	23.8	1.0	ug/l	25.0	ND	95	60-130				
1,3-Dichloropropane	28.5	1.0	ug/l	25.0	ND	114	65-140				
2,2-Dichloropropane	21.9	1.0	ug/l	25.0	ND	88	60-150				
1,1-Dichloropropene	26.5	1.0	ug/l	25.0	ND	106	60-145				
cis-1,3-Dichloropropene	26.6	0.50	ug/l	25.0	ND	106	70-140				
trans-1,3-Dichloropropene	28.2	0.50	ug/l	25.0	ND	113	70-140				
The Exemple property	20.2	0.50	-6/ ·	25.0		113	, 0 1 10				

Del Mar Analytical, Irvine

Patty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

∴ nalyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD Limit	Data Qualifiers
Batch: 4D25002 Extracted: 04/2	5/04								
	(4D25002-M	4S1)			Source:	IND1400	0-02		
Ethylbenzene	24.9	1.0	ug/l	25.0	ND	100	70-125		
Hexachlorobutadiene	28.0	1.0	ug/l	25.0	ND	112	65-140		
opropylbenzene	25.0	1.0	ug/l	25.0	ND	100	65-130		
p-Isopropyltoluene	24.3	1.0	ug/l	25.0	ND	97	70-130		
Methylene chloride	27.5	5.0	ug/l	25.0	ND	110	60-135		
aphthalene	31.9	1.0	ug/l	25.0	ND	128	50-145		
Propylbenzene	24.9	1.0	ug/l	25.0	ND	100	70-135		
Styrene	23.8	1.0	ug/l	25.0	ND	95	60-145		
1,1,2-Tetrachloroethane	27.9	1.0	ug/l	25.0	ND	112	65-145		
1,2,2-Tetrachloroethane	32.1	1.0	ug/l	25.0	ND	128	60-140		
Tetrachloroethene	30.2	1.0	ug/l	25.0	2.2	112	70-130		
Toluene	24.8	1.0	ug/l	25.0	ND	99	65-120		
2,3-Trichlorobenzene	30.2	1.0	ug/l	25.0	ND	121	60-135		
7,2,4-Trichlorobenzene	29.6	1.0	ug/l	25.0	ND	118	55-140		
1,1,1-Trichloroethane	24.6	1.0	ug/l	25.0	ND	98	75-140		
1,2-Trichloroethane	29.8	1.0	ug/l	25.0	ND	119	60-135		
ichloroethene	54.9	1.0	ug/l	25.0	28	108	70-125		
Trichlorofluoromethane	28.4	1.0	ug/l	25.0	ND	114	50-150		
¹ 2,3-Trichloropropane	31.0	1.0	ug/l	25.0	ND	124	60-140		
2,4-Trimethylbenzene	23.4	1.0	ug/l	25.0	ND	94	60-125		
1,3,5-Trimethylbenzene	24.2	1.0	ug/l	25.0	ND	97	70-130		
Vinyl chloride	25.3	0.50	ug/l	25.0	ND	101	40-130		
Xylene	24.2	1.0	ug/l	25.0	ND	97	65-125		
mp-Xylenes	48.4	1.0	ug/l	50.0	ND	97	60-125		
Surrogate: Dibromofluoromethane	27.0		ug/l	25.0		108	80-120		
rrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120		
rrogate: 4-Bromofluorobenzene	25.7		ug/l	25.0		103	80-120		

el Mar Analytical, Irvine

atty Mata

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 4D25002 Extracted: 04/25			0 222 0			, •				C
Daten. 4D23002 Extracted. 04/2.	<u> </u>									
Matrix Spike Dup Analyzed: 04/2	25/04 (4D250	02-MSD1)			Source:	IND1400	-02			
Benzene	24.4	0.50	ug/l	25.0	ND	98	70-120	5	20	
Bromobenzene	25.7	1.0	ug/l	25.0	ND	103	60-135	4	25	
Bromochloromethane	26.8	1.0	ug/l	25.0	ND	107	60-140	4	25	
Bromodichloromethane	27.9	1.0	ug/l	25.0	ND	112	70-140	2	20	
Bromoform	31.5	1.0	ug/l	25.0	ND	126	50-135	1	25	
Bromomethane	27.6	1.0	ug/l	25.0	ND	110	50-140	6	25	
n-Butylbenzene	23.7	1.0	ug/l	25.0	ND	95	70-135	5	20	
sec-Butylbenzene	23.4	1.0	ug/l	25.0	ND	94	70-130	4	20	
tert-Butylbenzene	24.1	1.0	ug/l	25.0	ND	96	70-130	4	20	
Carbon tetrachloride	29.4	0.50	ug/l	25.0	ND	118	70-140	4	25	
Chlorobenzene	25.1	1.0	ug/l	25.0	ND	100	80-125	5	20	
Chloroethane	21.3	1.0	ug/l	25.0	ND	85	50-145	5	25	
Chloroform	25.1	1.0	ug/l	25.0	ND	100	70-130	4	20	
Chloromethane	19.2	1.0	ug/l	25.0	ND	77	30-145	6	30	
2-Chlorotoluene	22.7	1.0	ug/l	25.0	ND	91	65-145	6	25	
4-Chlorotoluene	23.2	1.0	ug/l	25.0	ND	93	70-145	6	20	
Dibromochloromethane	28.3	1.0	ug/1	25.0	ND	113	65-145	0	20	
1,2-Dibromo-3-chloropropane	36.0	5.0	ug/l	25.0	ND	144	50-150	8	25	
1,2-Dibromoethane (EDB)	31.0	1.0	ug/l	25.0	ND	124	70-125	2	20	
Dibromomethane	31.5	1.0	ug/l	25.0	ND	126	65-135	1	20	
1,2-Dichlorobenzene	26.9	1.0	ug/l	25.0	ND	108	70-130	4	20	
1,3-Dichlorobenzene	25.1	1.0	ug/l	25.0	ND	100	70-130	5	20	
1,4-Dichlorobenzene	25.8	1.0	ug/l	25.0	ND	103	75-120	5	20	
Dichlorodifluoromethane	30.6	5.0	ug/l	25.0	ND	122	10-160	7	30	
1,1-Dichloroethane	35.8	1.0	ug/l	25.0	14	87	65-135	3	20	
1,2-Dichloroethane	30.6	0.50	ug/l	25.0	3.4	109	60-150	0	25	
1,1-Dichloroethene	27.5	1.0	ug/l	25.0	1.4	104	65-145	6	25	
cis-1,2-Dichloroethene	28.2	1.0	ug/l	25.0	4.4	95	60-130	5	20	
trans-1,2-Dichloroethene	25.6	1.0	ug/l	25.0	ND	102	60-135	6	20	
1,2-Dichloropropane	23.3	1.0	ug/l	25.0	ND	93	60-130	2	20	
1,3-Dichloropropane	28.3	1.0	ug/l	25.0	ND	113	65-140	1	25	
2,2-Dichloropropane	22.3	1.0	ug/l	25.0	ND	89	60-150	2	20	
1,1-Dichloropropene	25.2	1.0	ug/l	25.0	ND	101	60-145	5	20	
cis-1,3-Dichloropropene	26.1	0.50	ug/l	25.0	ND	104	70-140	2	20	
trans-1,3-Dichloropropene	27.6	0.50	ug/l	25.0	ND	110	70-140	2	20	
• •			-							

Del Mar Analytical, Irvine

Patty Mata

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D25002 Extracted: 04/2	5/04									
atrix Spike Dup Analyzed: 04/	25/04 (4D250	02-MSD1)			Source:	IND1400)-02			
Ethylbenzene	23.8	1.0	ug/l	25.0	ND	95	70-125	5	20	
Hexachlorobutadiene	27.4	1.0	ug/l	25.0	ND	110	65-140	2	25	
propylbenzene	23.8	1.0	ug/l	25.0	ND	95	65-130	5	25	
p-Isopropyltoluene	23.2	1.0	ug/l	25.0	ND	93	70-130	5	20	
Methylene chloride	26.3	5.0	ug/l	25.0	ND	105	60-135	4	20	
phthalene	34.1	1.0	ug/l	25.0	ND	136	50-145	7	25	
	23.6	1.0	ug/l	25.0	ND	94	70-135	5	20	
Styrene	23.6	1.0	ug/l	25.0	ND	94	60-145	1	25	
1,1,2-Tetrachloroethane	26.9	1.0	ug/l	25.0	ND	108	65-145	4	20	
,2,2-Tetrachloroethane	33.9	1.0	ug/l	25.0	ND	136	60-140	5	25	
Tetrachloroethene	29.2	1.0	ug/I	25.0	2.2	108	70-130	3	20	
Toluene	23.6	1.0	ug/l	25.0	ND	94	65-120	5	20	
?,3-Trichlorobenzene	30.4	1.0	ug/l	25.0	ND	122	60-135	1	20	
7,4-Trichlorobenzene	29.1	1.0	ug/l	25.0	ND	116	55-140	2	25	
1,1,1-Trichloroethane	24.5	1.0	ug/l	25.0	ND	98	75-140	0	20	
,2-Trichloroethane	29.6	1.0	ug/l	25.0	ND	118	60-135	1	20	
chloroethene	54.5	1.0	ug/l	25.0	28	106	70-125	1	20	
Trichlorofluoromethane	27.1	1.0	ug/l	25.0	ND	108	50-150	5	25	
¹ ?,3-Trichloropropane	32.6	1.0	ug/l	25.0	ND	130	60-140	5	25	
.,4-Trimethylbenzene	22.4	1.0	ug/l	25.0	ND	90	60-125	4	20	
1,3,5-Trimethylbenzene	23.0	1.0	ug/l	25.0	ND	92	70-130	5	20	
Vinyl chloride	23.8	0.50	ug/l	25.0	ND	95	40-130	6	25	
· Xylene	22.8	1.0	ug/l	25.0	ND	91	65-125	6	20	
p-Xylenes	47.1	1.0	ug/l	50.0	ND	94	60-125	3	25	
Surrogate: Dibromofluoromethane	27.1		ug/l	25.0		108	80-120			
. rrogate: Toluene-d8	27.9		ug/l	25.0		112	80-120			
rrogate: 4-Bromofluorobenzene	25.6		ug/l	25.0		102	80-120			

el Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-95689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee

18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

A walne.	Dogulé	Reporting Limit	Umita	Spike Level	Source	%REC	%REC	DDD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	Units	Level	Result	70KEC	Limits	KID	Lillit	Quanners
Batch: 4D26008 Extracted: 04/26	<u> </u>									
Blank Analyzed: 04/26/04 (4D260	008-BLK1)									
Benzene	ND	0.50	ug/l							
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	ug/l							
Bromodichloromethane	ND	1.0	ug/l							
Bromoform	ND	1.0	ug/l							
Bromomethane	ND	1.0	ug/l							
n-Butylbenzene	ND	1.0	ug/l							
sec-Butylbenzene	ND	1.0	ug/l							
tert-Butylbenzene	ND	1.0	ug/l							
Carbon tetrachloride	ND	0.50	ug/l							
Chlorobenzene	ND	1.0	ug/l							
Chloroethane	ND	1.0	ug/l							
Chloroform	ND	1.0	ug/l							
Chloromethane	ND	1.0	ug/l							
2-Chlorotoluene	ND	1.0	ug/l							
4-Chlorotoluene	ND	1.0	ug/l							
Dibromochloromethane	ND	1.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l							
1,2-Dibromoethane (EDB)	ND	1.0	ug/l							
Dibromomethane	ND	1.0	ug/l							
1,2-Dichlorobenzene	ND	1.0	ug/l							
1,3-Dichlorobenzene	ND	1.0	ug/l							
1,4-Dichlorobenzene	ND	1.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l							
1,1-Dichloroethane	ND	1.0	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	1.0	ug/l							
cis-1,2-Dichloroethene	ND	1.0	ug/l							
trans-1,2-Dichloroethene	ND	1.0	ug/l							
1,2-Dichloropropane	ND	1.0	ug/l							
1,3-Dichloropropane	ND	1.0	ug/l							
2,2-Dichloropropane	ND	1.0	ug/l							
1,1-Dichloropropene	ND	1.0	ug/l							
cis-1,3-Dichloropropene	ND	0.50	ug/l							
trans-1,3-Dichloropropene	ND	0.50	ug/l							
Dalaman Amalasia I Yani										

Del Mar Analytical, Irvine

Patty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

%REC

Camp, Dresser & McKee 18581 Teller Avenue, #200

rvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Reporting

Sampled: 04/21/04

Received: 04/21/04

RPD

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD Limit	Data Qualifiers
Ratch: 4D26008 Extracted: 04/2									
mank Analyzed: 04/26/04 (4D26	008-RLK1)								
Ethylbenzene	ND	1.0	ug/l						
xachlorobutadiene	ND	1.0	ug/l						
)propylbenzene	ND	1.0	ug/l						
p-Isopropyltoluene	ND	1.0	ug/l						
Methylene chloride	ND	5.0	ug/l						
iphthalene	ND	1.0	ug/l						
ff-Propylbenzene	ND	1.0	ug/l						
Styrene	ND	1.0	ug/l						
I,I,2-Tetrachloroethane	ND	1.0	ug/l						
,2,2-Tetrachloroethane	ND	1.0	ug/l						
Tetrachloroethene	ND	1.0	ug/l						
Toluene	ND	1.0	ug/l						
2,3-Trichlorobenzene	ND	1.0	ug/l						
1,2,4-Trichlorobenzene	ND	1.0	ug/l						
1.1,1-Trichloroethane	ND	1.0	ug/l						
,2-Trichloroethane	ND	1.0	ug/l						
Hichloroethene	ND	1.0	ug/l						
Trichlorofluoromethane	ND	1.0	ug/l						
2,3-Trichloropropane	ND	1.0	ug/l						
-2,4-Trimethylbenzene	ND	1.0	ug/l						
1,3,5-Trimethylbenzene	ND	1.0	ug/l						
Vinyl chloride	ND	0.50	ug/l						
Xylene	ND	1.0	ug/l						
m,p-Xylenes	ND	1.0	ug/l						
Surrogate: Dibromofluoromethane	26.2		ug/l	25.0		105	80-120		
rrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120		
mrrogate: 4-Bromofluorobenzene	25.7		ug/l	25.0		103	80-120		

el Mar Analytical, Irvine

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

	70. 1.	Reporting	** *****	Spike	Source	A/DEG	%REC	nnn	RPD	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Qualifiers	٠
Batch: 4D26008 Extracted: 04/2	26/04										÷
LCS Analyzed: 04/26/04 (4D260	008-BS1)										(
Benzene	24.8	0.50	ug/l	25.0		99	70-120				
Bromobenzene	26.5	1.0	ug/l	25.0		106	80-120				
Bromochloromethane	26.5	1.0	ug/l	25.0		106	65-135				i
Bromodichloromethane	27.7	1.0	ug/l	25.0		111	70-140				
Bromoform	30.1	1.0	ug/l	25.0		120	50-135				
Bromomethane	29.2	1.0	ug/l	25.0		117	60-140				
n-Butylbenzene	24.1	1.0	ug/l	25.0		96	75-130				ì
sec-Butylbenzene	23.8	1.0	ug/l	25.0		95	75-125				
tert-Butylbenzene	24.6	1.0	ug/l	25.0		98	75-125				
Carbon tetrachloride	29.9	0.50	ug/l	25.0		120	70-140				1
Chlorobenzene	25.6	1.0	ug/l	25.0		102	80-125				
Chloroethane	22.2	1.0	ug/l	25.0		89	60-145				
Chloroform	24.8	1.0	ug/l	25.0		99	70-130				
Chloromethane	20.1	1.0	ug/l	25.0		80	40-145				
2-Chlorotoluene	23.5	1.0	ug/l	25.0		94	75-125				
4-Chlorotoluene	24.3	1.0	ug/l	25.0		97	75-125				
Dibromochloromethane	27.8	1.0	ug/l	25.0		111	65-145				1
1,2-Dibromo-3-chloropropane	29.7	5.0	ug/l	25.0		119	50-130				
1,2-Dibromoethane (EDB)	29.4	1.0	ug/l	25.0		118	70-125				
Dibromomethane	29.8	1.0	ug/l	25.0		119	70-130				
1,2-Dichlorobenzene	27.0	1.0	ug/l	25.0		108	75-120				
1,3-Dichlorobenzene	25.9	1.0	ug/l	25.0		104	75-120				
1,4-Dichlorobenzene	26.2	1.0	ug/l	25.0		105	80-120				
Dichlorodifluoromethane	30.6	5.0	ug/l	25.0		122	10-160				
1,1-Dichloroethane	22.2	1.0	ug/l	25.0		89	70-135				
1,2-Dichloroethane	26.2	0.50	ug/l	25.0		105	60-150				
1,1-Dichloroethene	25.7	1.0	ug/l	25.0		103	75-140				
cis-1,2-Dichloroethene	24.1	1.0	ug/l	25.0		96	65-125				
trans-1,2-Dichloroethene	25.0	1.0	ug/l	25.0		100	65-130				
1,2-Dichloropropane	23.3	1.0	ug/l	25.0		93	65-120				
1,3-Dichloropropane	27.2	1.0	ug/l	25.0		109	70-130				
2,2-Dichloropropane	21.0	1.0	ug/l	25.0		84	70-150				
1,1-Dichloropropene	25.8	1.0	ug/l	25.0		103	75-130				
cis-1,3-Dichloropropene	26.2	0.50	ug/l	25.0		105	70-130				
trans-1,3-Dichloropropene	27.2	0.50	ug/l	25.0		109	75-135				
• •			-								

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source	%REC	RPD	Data
analyte	Result	Limit	Units	Level	Result %REC	Limits RI	PD Limit	Qualifiers
Batch: 4D26008 Extracted: 04/	/26/04							
CS Analyzed: 04/26/04 (4D26	6008-BS1)							
Ethylbenzene	24.4	1.0	ug/l	25.0	98	80-120		
rexachlorobutadiene	26.8	1.0	ug/l	25.0	107	65-140		
propylbenzene	24.6	1.0	ug/l	25.0	98	70-125		
p-Isopropyltoluene	23.7	1.0	ug/l	25.0	95	75-125		
Methylene chloride	25.8	5.0	ug/l	25.0	103	60-135		
aphthalene	28.8	1.0	ug/l	25.0	115	50-145		
Propylbenzene	24.5	1.0	ug/l	25.0	98	75-130		
Styrene	24.6	1.0	ug/l	25.0	98	80-135		
1,1,2-Tetrachloroethane	27.4	1.0	ug/l	25.0	110	70-145		
1,2,2-Tetrachloroethane	29.4	1.0	ug/l	25.0	118	60-135		
Tetrachloroethene	27.8	1.0	ug/l	25.0	111	75-125		
Toluene	23.8	1.0	ug/l	25.0	95	70-120		
2,3-Trichlorobenzene	29.2	1.0	ug/l	25.0	117	65-135		
7,2,4-Trichlorobenzene	28.6	1.0	ug/l	25.0	114	70-140		
1,1,1-Trichloroethane	23.8	1.0	ug/l	25.0	95	75-140		
1,2-Trichloroethane	28.1	1.0	ug/l	25.0	112	65-125		
ichloroethene	27.3	1.0	ug/l	25.0	109	75-120		
Trichlorofluoromethane	26.7	1.0	ug/l	25.0	107	60-145		
· 2,3-Trichloropropane	28.8	1.0	ug/l	25.0	115	60-130		
2,4-Trimethylbenzene	23.3	1.0	ug/l	25.0	93	75-125		
1,3,5-Trimethylbenzene	23.9	1.0	ug/l	25.0	96	75-125		
Vinyl chloride	24.8	0.50	ug/l	25.0	99	50-125		
Xylene	23.6	1.0	ug/l	25.0	94	75-125		
m,p-Xylenes	47.6	1.0	ug/l	50.0	95	70-120		
Surrogate: Dibromofluoromethane	26.1		ug/l	25.0	104	80-120		
rrogate: Toluene-d8	27.7		ug/l	25.0	111	80-120		
rrogate: 4-Bromofluorobenzene	25.5		ug/l	25.0	102	80-120		

el Mar Analytical, Irvine

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits RP	RPD D Limit	Data Qualifiers
Batch: 4D26008 Extracted: 04/20									
Daten. 4D20000 Extracted. 04/20	<u> </u>								
Matrix Spike Analyzed: 04/26/04	(4D26008-M	IS1)			Source:	IND1407	7-02		
Benzene	26.7	0.50	ug/l	25.0	ND	107	70-120		
Bromobenzene	27.3	1.0	ug/l	25.0	ND	109	60-135		
Bromochloromethane	28.9	1.0	ug/l	25.0	ND	116	60-140		
Bromodichloromethane	29.4	1.0	ug/l	25.0	ND	118	70-140		
Bromoform	31.1	1.0	ug/l	25.0	ND	124	50-135		
Bromomethane	30.8	1.0	ug/l	25.0	ND	123	50-140		
n-Butylbenzene	25.8	1.0	ug/l	25.0	ND	103	70-135		
sec-Butylbenzene	25.4	1.0	ug/l	25.0	ND	102	70-130		
tert-Butylbenzene	25.8	1.0	ug/l	25.0	ND	103	70-130		
Carbon tetrachloride	32.2	0.50	ug/l	25.0	ND	129	70-140		
Chlorobenzene	27.2	1.0	ug/l	25.0	ND	109	80-125		
Chloroethane	24.5	1.0	ug/l	25.0	ND	98	50-145		
Chloroform	27.0	1.0	ug/l	25.0	ND	108	70-130		
Chloromethane	21.6	1.0	ug/l	25.0	ND	86	30-145		
2-Chlorotoluene	24.8	1.0	ug/l	25.0	ND	99	65-145		
4-Chlorotoluene	25.3	1.0	ug/l	25.0	ND	101	70-145		
Dibromochloromethane	29.1	1.0	ug/l	25.0	ND	116	65-145		
1,2-Dibromo-3-chloropropane	30.0	5.0	ug/l	25.0	ND	120	50-150		
1,2-Dibromoethane (EDB)	30.3	1.0	ug/l	25.0	ND	121	70-125		
Dibromomethane	31.0	1.0	ug/l	25.0	ND	124	65-135		
1,2-Dichlorobenzene	28.8	1.0	ug/l	25.0	ND	115	70-130		
1,3-Dichlorobenzene	27.6	1.0	ug/l	25.0	ND	110	70-130		
1,4-Dichlorobenzene	28.0	1.0	ug/l	25.0	ND	112	75-120		
Dichlorodifluoromethane	33.7	5.0	ug/l	25.0	ND	135	10-160		
1,1-Dichloroethane	24.3	1.0	ug/l	25.0	ND	97	65-135		
1,2-Dichloroethane	27.4	0.50	ug/l	25.0	ND	110	60-150		
1,1-Dichloroethene	27.6	1.0	ug/l	25.0	ND	110	65-145		
cis-1,2-Dichloroethene	26.2	1.0	ug/l	25.0	ND	105	60-130		
trans-1,2-Dichloroethene	27.4	1.0	ug/l	25.0	ND	110	60-135		
1,2-Dichloropropane	24.8	1.0	ug/l	25.0	ND	99	60-130		
1,3-Dichloropropane	28.7	1.0	ug/l	25.0	ND	115	65-140		
2,2-Dichloropropane	22.8	1.0	ug/l	25.0	ND	91	60-150		
1,1-Dichloropropene	27.7	1.0	ug/l	25.0	ND	111	60-145		
cis-1,3-Dichloropropene	27.9	0.50	ug/l	25.0	ND	112	70-140		
trans-1,3-Dichloropropene	28.6	0.50	ug/l	25.0	ND	114	70-140		
-,- · · · · · · · · · · · · · · · · · ·		0.50	-D.,	20.0					

Del Mar Analytical, Irvine

Patty Mata

Irvine, CA 92612
Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Snika

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

ppn

% DEC

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Ratch: 4D26008 Extracted: 04/2	26/04									
■latrix Spike Analyzed: 04/26/04	4 (4D26008-M	(S1)			Source:	IND1407	7-02			
Ethylbenzene	25.9	1.0	ug/l	25.0	ND	104	70-125			
exachlorobutadiene	29.0	1.0	ug/l	25.0	ND	116	65-140			
opropylbenzene	25.5	1.0	ug/l	25.0	ND	102	65-130			
p-Isopropyltoluene	25.0	1.0	ug/l	25.0	ND	100	70-130			
Methylene chloride	28.7	5.0	ug/l	25.0	ND	115	60-135			
aphthalene	30.0	1.0	ug/l	25.0	0.43	118	50-145			
	25.6	1.0	ug/l	25.0	ND	102	70-135			
Styrene	24.4	1.0	ug/l	25.0	ND	98	60-145			
1,1,2-Tetrachloroethane	29.1	1.0	ug/l	25.0	ND	116	65-145			
1,2,2-Tetrachloroethane	30.7	1.0	ug/l	25.0	ND	123	60-140			
Tetrachloroethene	29.1	1.0	ug/l	25.0	ND	116	70-130			
Toluene	25.8	1.0	ug/l	25.0	ND	103	65-120			
2,3-Trichlorobenzene	30.9	1.0	ug/l	25.0	ND	124	60-135			
T,2,4-Trichlorobenzene	30.9	1.0	ug/l	25.0	ND	124	55-140			
1,1,1-Trichloroethane	26.6	1.0	ug/l	25.0	ND	106	75-140			
1,2-Trichloroethane	30.2	1.0	ug/l	25.0	ND	121	60-135			
richloroethene	28.7	1.0	ug/l	25.0	ND	115	70-125			
Trichlorofluoromethane	29.9	1.0	ug/l	25.0	ND	120	50-150			
2,3-Trichloropropane	28.9	1.0	ug/l	25.0	ND	116	60-140			
2,4-Trimethylbenzene	24.6	1.0	ug/l	25.0	ND	98	60-125			
1,3,5-Trimethylbenzene	24.9	1.0	ug/l	25.0	ND	100	70-130			
Vinyl chloride	26.0	0.50	ug/l	25.0	ND	104	40-130			
Xylene	25.6	1.0	ug/l	25.0	ND	102	65-125			
m,p-Xylenes	51.1	1.0	ug/l	50.0	ND	102	60-125			
Surrogate: Dibromofluoromethane	27.0		ug/l	25.0		108	80-120			
ırrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
urrogate: 4-Bromofluorobenzene	25.8		ug/l	25.0		103	80-120			

el Mar Analytical, Irvine

Tatty Mata

%REC

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Spike Source

Report Number: IND1400

Reporting

Sampled: 04/21/04

Received: 04/21/04

RPD

Data

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Kepoi ung		Spike	Source		/orce		KLD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D26008 Extracted: 04/2	26/04									
Matrix Spike Dup Analyzed: 04/	/26/04 (4D260	008-MSD1)			Source:	IND1407	7-02			
Benzene	26.0	0.50	ug/l	25.0	ND	104	70-120	3	20	
Bromobenzene	27.5	1.0	ug/l	25.0	ND	110	60-135	1	25	
Bromochloromethane	29.1	1.0	ug/l	25.0	ND	116	60-140	1	25	
Bromodichloromethane	29.1	1.0	ug/l	25.0	ND	116	70-140	1	20	
Bromoform	32.7	1.0	ug/l	25.0	ND	131	50-135	5	25	
Bromomethane	29.2	1.0	ug/l	25.0	ND	117	50-140	5	25	
n-Butylbenzene	25.8	1.0	ug/l	25.0	ND	103	70-135	0	20	
sec-Butylbenzene	25.3	1.0	ug/l	25.0	ND	101	70-130	0	20	
tert-Butylbenzene	25.9	1.0	ug/l	25.0	ND	104	70-130	0	20	
Carbon tetrachloride	32.1	0.50	ug/l	25.0	ND	128	70-140	0	25	
Chlorobenzene	27.3	1.0	ug/l	25.0	ND	109	80-125	0	20	
Chloroethane	23.7	1.0	ug/l	25.0	ND	95	50-145	3	25	
Chloroform	26.6	1.0	ug/l	25.0	ND	106	70-130	1	20	
Chloromethane	21.2	1.0	ug/l	25.0	ND	85	30-145	2	30	
2-Chlorotoluene	24.9	1.0	ug/l	25.0	ND	100	65-145	0	25	
4-Chlorotoluene	25.3	1.0	ug/l	25.0	ND	101	70-145	0	20	
Dibromochloromethane	29.4	1.0	ug/l	25.0	ND	118	65-145	1	20	
1,2-Dibromo-3-chloropropane	33.8	5.0	ug/l	25.0	ND	135	50-150	12	25	
1,2-Dibromoethane (EDB)	31.6	1.0	ug/l	25.0	ND	126	70-125	4	20	MI
Dibromomethane	32.1	1.0	ug/l	25.0	ND	128	65-135	3	20	
1,2-Dichlorobenzene	28.6	1.0	ug/l	25.0	ND	114	70-130	1	20	
1,3-Dichlorobenzene	27.3	1.0	ug/l	25.0	ND	109	70-130	1	20	
1,4-Dichlorobenzene	28.0	1.0	ug/l	25.0	ND	112	75-120	0	20	
Dichlorodifluoromethane	32.1	5.0	ug/l	25.0	ND	128	10-160	5	30	
1,1-Dichloroethane	24.0	1.0	ug/l	25.0	ND	96	65-135	1	20	
1,2-Dichloroethane	. 27.9	. 0.50	ug/l	25.0	ND	112	60-150	2	25	
1,1-Dichloroethene	26.5	1.0	ug/l	25.0	ND	106	65-145	4	25	
cis-1,2-Dichloroethene	25.5	1.0	ug/l	25.0	ND	102	60-130	3	20	
trans-1,2-Dichloroethene	26.8	1.0	ug/l	25.0	ND	107	60-135	2	20	
1,2-Dichloropropane	24.5	1.0	ug/l	25.0	ND	98	60-130	1	20	
1,3-Dichloropropane	29.4	1.0	ug/l	25.0	ND	118	65-140	2	25	
2,2-Dichloropropane	25.0	1.0	ug/l	25.0	ND	100	60-150	9	20	
1,1-Dichloropropene	27.3	1.0	ug/l	25.0	ND	109	60-145	1	20	
cis-1,3-Dichloropropene	27.6	0.50	ug/l	25.0	ND	110	70-140	1	20	
trans-1,3-Dichloropropene	29.1	0.50	ug/l	25.0	ND	116	70-140	2	20	

Del Mar Analytical, Irvine

Patty Mata

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D26008 Extracted: 04/2	6/04									
Latrix Spike Dup Analyzed: 04/2	26/04 (4D260	08-MSD1)			Source:	IND1407	7-02			
Ethylbenzene	25.8	1.0	ug/l	25.0	ND	103	70-125	0	20	
"exachlorobutadiene	29.2	1.0	ug/l	25.0	ND	117	65-140	1	25	
opropylbenzene	25.8	1.0	ug/l	25.0	ND	103	65-130	1	25	
p-Isopropyltoluene	25.2	1.0	ug/l	25.0	ND	101	70-130	1	20	
Methylene chloride	27.7	5.0	ug/l	25.0	ND	111	60-135	4	20	
aphthalene	32.7	1.0	ug/l	25.0	0.43	129	50-145	9	25	
Propylbenzene	25.6	1.0	ug/l	25.0	ND	102	70-135	0	20	
Styrene	21.8	1.0	ug/l	25.0	ND	87	60-145	11	25	
I,1,2-Tetrachloroethane	29.0	1.0	ug/l	25.0	ND	116	65-145	0	20	
1,2,2-Tetrachloroethane	33.0	1.0	ug/l	25.0	ND	132	60-140	7	25	
Tetrachloroethene	29.0	1.0	ug/l	25.0	ND	116	70-130	0	20	
Toluene	25.3	1.0	ug/l	25.0	ND	101	65-120	2	20	
2,3-Trichlorobenzene	31.6	1.0	ug/l	25.0	ND	126	60-135	2	20	
7,2,4-Trichlorobenzene	31.1	1.0	ug/l	25.0	ND	124	55-140	1	25	
1,1,1-Trichloroethane	27.1	1.0	ug/l	25.0	ND	108	75-140	2	20	
1,2-Trichloroethane	30.4	1.0	ug/l	25.0	ND	122	60-135	1	20	
richloroethene	28.8	1.0	ug/l	25.0	ND	115	70-125	0	20	
Trichlorofluoromethane	29.1	1.0	ug/l	25.0	ND	116	50-150	3	25	
2,3-Trichloropropane	31.7	1.0	ug/l	25.0	ND	127	60-140	9	25	
2,4-Trimethylbenzene	24.5	1.0	ug/l	25.0	ND	98	60-125	0	20	
1,3,5-Trimethylbenzene	24.7	1.0	ug/l	25.0	ND	99	70-130	1	20	
Vinyl chloride	25.6	0.50	ug/l	25.0	ND	102	40-130	2	25	
·Xylene	25.4	1.0	ug/l	25.0	ND	102	65-125	1	20	
m,p-Xylenes	51.0	1.0	ug/l	50.0	ND	102	60-125	0	25	
Surrogate: Dibromofluoromethane	26.8		ug/l	25.0		107	80-120			
urrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120			
urrogate: 4-Bromofluorobenzene	25.7		ug/l	25.0		103	80-120			

el Mar Analytical, Irvine

Tatty Mata

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/OC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D26019 Extracted: 04/26	/04									
Plants A. alamada 0.4/26/04 (47)266	10 DI 171)									
Blank Analyzed: 04/26/04 (4D260 Benzene	ND	0.50	ug/l							
Bromobenzene	ND	1.0	ug/l ug/l							
Bromochloromethane	ND	1.0	ug/l ug/l							
Bromodichloromethane	ND	1.0	ug/l							
Bromoform	ND	1.0	ug/l ug/l							
Bromomethane	ND	1.0	ug/l ug/l							
n-Butylbenzene	ND	1.0	ug/l ug/l							
sec-Butylbenzene	ND	1.0	ug/l ug/l							
tert-Butylbenzene	ND	1.0	ug/l ug/l							
Carbon tetrachloride	ND	0.50	ug/l ug/l							
Chlorobenzene	ND	1.0	ug/l ug/l							
Chloroethane	ND	1.0	ug/l							
Chloroform	ND	1.0	ug/l ug/l							
Chloromethane	ND	1.0								
2-Chlorotoluene	ND	1.0	ug/l ug/l							
4-Chlorotoluene	ND	1.0								
Dibromochloromethane	ND	1.0	ug/l ug/l							
1,2-Dibromo-3-chloropropane	ND ND	5.0	ug/l ug/l							
1,2-Dibromoethane (EDB)	ND	1.0	ug/l ug/l							
Dibromomethane	ND	1.0	ug/l							
1,2-Dichlorobenzene	ND	1.0	ug/l ug/l							
1,3-Dichlorobenzene	ND	1.0	ug/l							
1,4-Dichlorobenzene	ND	1.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l ug/l							
1,1-Dichloroethane	ND	1.0	ug/l ug/l							
1,2-Dichloroethane	ND	0.50	ug/l ug/l							
1,1-Dichloroethene	ND	1.0	ug/l							
cis-1,2-Dichloroethene	ND	1.0	ug/l ug/l							
trans-1,2-Dichloroethene	ND	1.0	ug/l ug/l							
1,2-Dichloropropane	ND	1.0	ug/l							
1,3-Dichloropropane	ND ND	1.0								
2,2-Dichloropropane	ND	1.0	ug/l							
1,1-Dichloropropene	ND	1.0	ug/l							
cis-1,3-Dichloropropene	ND ND	0.50	ug/l							
trans-1,3-Dichloropropene	ND	0.50	ug/I							
нань-1,5-истоюргорене	ND	0.30	ug/l							
Del Mar Analytical, Irvine										

Del Mar Analytical, Irvine

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

■ Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4D26019 Extracted: 04/	26/04									
Blank Analyzed: 04/26/04 (4D2	26019-BLK1)									
Ethylbenzene	ND	1.0	ug/l							
Texachlorobutadiene	ND	1.0	ug/l							
sopropylbenzene	ND	1.0	ug/l							
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
Vaphthalene	ND	1.0	ug/l							
	ND	1.0	ug/l							
Styrene	ND	1.0	ug/l							
,1,1,2-Tetrachloroethane	ND	1.0	ug/l							
1,2,2-Tetrachloroethane	ND	1.0	ug/l							
Tetrachloroethene	ND	1.0	ug/l							
Toluene	ND	1.0	ug/l							
,2,3-Trichlorobenzene	ND	1.0	ug/l							
7,2,4-Trichlorobenzene	ND	1.0	ug/l							
1,1,1-Trichloroethane	ND	1.0	ug/l							
,1,2-Trichloroethane	ND	1.0	ug/l							
richloroethene	ND	1.0	ug/l							
Trichlorofluoromethane	ND	1.0	ug/l							
,2,3-Trichloropropane	ND	1.0	ug/l							
,2,4-Trimethylbenzene	ND	1.0	ug/l							
1,3,5-Trimethylbenzene	ND	1.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
-Xylene	ND	1.0	ug/l							
In,p-Xylenes	ND	1.0	ug/l							
Surrogate: Dibromofluoromethane	27.4		ug/l	25.0		110	80-120			
'urrogate: Toluene-d8	26.9		ug/l	25.0		108	80-120			
urrogate: 4-Bromofluorobenzene	27.7		ug/l	25.0		111	80-120			

Del Mar Analytical, Irvine

Patty Mata

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC	RPD Limit	Data Qualifiers
·		Limit	Omts	Level	Result /0REC	Limits Kt D	Dimit	Quanners
Batch: 4D26019 Extracted: 04/26	<u> 5/04 </u>							
LCS Analyzed: 04/26/04 (4D2601	9-BS1)							
Benzene	24.7	0.50	ug/l	25.0	99	70-120		
Bromobenzene	25.4	1.0	ug/l	25.0	102	80-120		
Bromochloromethane	25.3	1.0	ug/l	25.0	101	65-135		
Bromodichloromethane	25.9	1.0	ug/l	25.0	104	70-140		
Bromoform	26.5	1.0	ug/l	25.0	106	50-135		
Bromomethane	25.4	1.0	ug/l	25.0	102	60-140		
n-Butylbenzene	26.3	1.0	ug/l	25.0	105	75-130		
sec-Butylbenzene	24.4	1.0	ug/l	25.0	98	75-125		
tert-Butylbenzene	25.1	1.0	ug/l	25.0	100	75-125		
Carbon tetrachloride	26.3	0.50	ug/l	25.0	105	70-140		
Chlorobenzene	24.6	1.0	ug/l	25.0	98	80-125		
Chloroethane	26.2	1.0	ug/l	25.0	105	60-145		
Chloroform	25.2	1.0	ug/l	25.0	101	70-130		
Chloromethane	24.8	1.0	ug/l	25.0	99	40-145		
2-Chlorotoluene	25.1	1.0	ug/l	25.0	100	75-125		
4-Chlorotoluene	24.9	1.0	ug/l	25.0	100	75-125		
Dibromochloromethane	25.3	1.0	ug/l	25.0	101	65-145		
1,2-Dibromo-3-chloropropane	22.7	5.0	ug/l	25.0	91	50-130		
1,2-Dibromoethane (EDB)	25.4	1.0	ug/l	25.0	102	70-125		
Dibromomethane	24.4	1.0	ug/l	25.0	98	70-130		
1,2-Dichlorobenzene	24.8	1.0	ug/l	25.0	99	75-120		
1,3-Dichlorobenzene	24.0	1.0	ug/l	25.0	96	75-120		
1,4-Dichlorobenzene	23.8	1.0	ug/l	25.0	95	80-120		
Dichlorodifluoromethane	27.3	5.0	ug/l	25.0	109	10-160		
1,1-Dichloroethane	25.5	1.0	ug/l	25.0	102	70-135		
1,2-Dichloroethane	24.7	0.50	ug/l	25.0	99	60-150		
1,1-Dichloroethene	25.5	1.0	ug/l	25.0	102	75-140		
cis-1,2-Dichloroethene	24.8	1.0	ug/l	25.0	99	65-125		
trans-1,2-Dichloroethene	25.8	1.0	ug/l	25.0	103	65-130		
1,2-Dichloropropane	24.8	1.0	ug/l	25.0	99	65-120		
1,3-Dichloropropane	24.4	1.0	ug/l	25.0	98	70-130		
2,2-Dichloropropane	25.7	1.0	ug/l	25.0	103	70-150		
1,1-Dichloropropene	26.1	1.0	ug/l	25.0	104	75-130		
cis-1,3-Dichloropropene	25.2	0.50	ug/l	25.0	101	70-130		
trans-1,3-Dichloropropene	26.6	0.50	ug/l	25.0	106	75-135		
`			-6-					

Del Mar Analytical, Irvine

■Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

	Reporting		Spike	Source		%REC		RPD	Data
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Ratch: 4D26019 Extracted: 04/26/04									
SCS Analyzed: 04/26/04 (4D26019-BS1)									
Ethylbenzene 24.7	1.0	ug/l	25.0		99	80-120			
exachlorobutadiene 24.5	1.0	ug/l	25.0		98	65-140			
opropylbenzene 25.4	1.0	ug/l	25.0		102	70-125			
p-Isopropyltoluene 24.0	1.0	ug/l	25.0		96	75-125			
Methylene chloride 25.3	5.0	ug/l	25.0		101	60-135			
aphthalene 26.7	1.0	ug/l	25.0		107	50-145			
n-Propylbenzene 26.4	1.0	ug/l	25.0		106	75-130			
Styrene 26.4	1.0	ug/l	25.0		106	80-135			
1,1,2-Tetrachloroethane 25.5	1.0	ug/l	25.0		102	70-145			
1,2,2-Tetrachloroethane 25.2	1.0	ug/l	25.0		101	60-135			
Tetrachloroethene 24.5	1.0	ug/l	25.0		98	75-125			
Toluene 24.8	1.0	ug/l	25.0		99	70-120			
2,3-Trichlorobenzene 24.4	1.0	ug/l	25.0		98	65-135			
1,2,4-Trichlorobenzene 24.7	1.0	ug/l	25.0		99	70-140			
1,1,1-Trichloroethane 26.1	1.0	ug/l	25.0		104	75-140			
1,2-Trichloroethane 25.3	1.0	ug/l	25.0		101	65-125			
Frichloroethene 24.8	1.0	ug/l	25.0		99	75-120			
Trichlorofluoromethane 25.6	1.0	ug/l	25.0		102	60-145			
2,3-Trichloropropane 24.2	1.0	ug/l	25.0		97	60-130			
2,4-Trimethylbenzene 25.2	1.0	ug/l	25.0		101	75-125			
1,3,5-Trimethylbenzene 26.2	1.0	ug/l	25.0		105	75-125			
Yinyl chloride 21.2	0.50	ug/l	25.0		85	50-125			
-Xylene 24.4	1.0	ug/l	25.0		98	75-125			
m,p-Xylenes 49.8	1.0	ug/l	50.0		100	70-120			
Surrogate: Dibromofluoromethane 27.1		ug/l	25.0		108	80-120			
urrogate: Toluene-d8 28.5		ug/l	25.0		114	80-120			
urrogate: 4-Bromofluorobenzene 28.1		ug/l	25.0		112	80-120			

Del Mar Analytical, Irvine

%REC

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Spike Source

Report Number: IND1400

Reporting

Sampled: 04/21/04

Received: 04/21/04

RPD

Data

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D26019 Extracted: 04/20			0		2400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Q
Marin C. T. A. J. al. al. 04/07/04	(4D2(010 B)	* 04\				XNID 4 5 4 0				
Matrix Spike Analyzed: 04/26/04 Benzene	23.8	0.50	/1	25.0	0.55	IND1510 93	70-120			
Bromobenzene	25.1	1.0	ug/l	25.0 25.0	0.55 ND	100	60-135			
Bromochloromethane	25.6	1.0	ug/l	25.0	ND ND	100	60-140			
Bromodichloromethane	25.2	1.0	ug/l ug/l	25.0	ND	102	70-140			
Bromoform	25.6	1.0	ug/l	25.0	ND	101	50-135			
Bromomethane	25.2	1.0	ug/l ug/l	25.0	ND	102	50-133			
n-Butylbenzene	24.5	1.0	ug/l ug/l	25.0	ND	98	70-135			
sec-Butylbenzene	25.5	1.0	_	25.0	1.5	96	70-133			
tert-Butylbenzene	24.2	1.0	ug/l	25.0	ND	90 97	70-130			
Carbon tetrachloride	24.2	0.50	ug/l ug/l	25.0	ND	99	70-130			
Chlorobenzene	24.0	1.0	_	25.0	ND	96	80-125			
Chloroethane	26.6	1.0	ug/l	25.0	ND ND	106	50-125			
Chloroform	25.3	1.0	ug/l	25.0	ND	100	70-130			
Chloromethane	25.2	1.0	ug/l	25.0	ND	101	30-145			
2-Chlorotoluene	23.6	1.0	ug/l	25.0	ND	94	65-145			
4-Chlorotoluene	23.0	1.0	ug/l ug/l	25.0	ND	93	70-145			
Dibromochloromethane	24.4	1.0	ug/l	25.0	ND	98	65-145			
1,2-Dibromo-3-chloropropane	22.7	5.0	ug/l ug/l	25.0	ND	91	50-150			
1,2-Dibromoethane (EDB)	24.3	1.0	ug/l	25.0	ND	97	70-125			
Dibromomethane	23.9	1.0	ug/l	25.0	ND	96	65-135			
1,2-Dichlorobenzene	23.8	1.0	ug/l	25.0	ND	95	70-130			
1,3-Dichlorobenzene	24.1	1.0	ug/l	25.0	ND	96	70-130			
1,4-Dichlorobenzene	23.7	1.0	ug/l	25.0	ND	95	75-120			
Dichlorodifluoromethane	26.1	5.0	ug/l	25.0	ND	104	10-160			
1,1-Dichloroethane	25.0	1.0	ug/l	25.0	ND	100	65-135			
1,2-Dichloroethane	26.2	0.50	ug/l	25.0	1.7	98	60-150			
1,1-Dichloroethene	25.0	1.0	ug/l	25.0	ND	100	65-145			
cis-1,2-Dichloroethene	50.6	1.0	ug/l	25.0	27	94	60-130			
trans-1,2-Dichloroethene	24.8	1.0	ug/l	25.0	0.32	98	60-135			
1,2-Dichloropropane	24.0	1.0	ug/l	25.0	ND	96	60-130			
1,3-Dichloropropane	23.8	1.0	ug/l	25.0	ND	95	65-140			
2,2-Dichloropropane	25.1	1.0	ug/l	25.0	ND	100	60-150			
1,1-Dichloropropene	24.7	1.0	ug/l ug/l	25.0	ND	99	60-130			
cis-1,3-Dichloropropene	25.9	0.50	_	25.0	ND ND	104	70-140			
trans-1,3-Dichloropropene	26.3	0.50	ug/l	25.0	ND ND	104	70-140			
D.134	20.5	0.50	ug/l	23.0	ND	103	/0-140			

Del Mar Analytical, Irvine

Patty Mata

Project Manager

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

-Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4D26019 Extracted: 04/2	6/04									
■1atrix Spike Analyzed: 04/26/04	(4D26019-N	1 S1)			Source:	IND1510)-01			
Ethylbenzene	27.9	1.0	ug/l	25.0	4.2	95	70-125			
Texachlorobutadiene	23.4	1.0	ug/l	25.0	ND	94	65-140			
_;opropylbenzene	27.8	1.0	ug/l	25.0	3.2	98	65-130			
p-Isopropyltoluene	22.8	1.0	ug/l	25.0	ND	91	70-130			
Methylene chloride	24.8	5.0	ug/l	25.0	ND	99	60-135			
aphthalene	25.0	1.0	ug/l	25.0	ND	100	50-145			
	27.2	1.0	ug/l	25.0	2.2	100	70-135			
Styrene	0.430	1.0	ug/l	25.0	ND	2	60-145			M2
,1,1,2-Tetrachloroethane	25.2	1.0	ug/l	25.0	ND	101	65-145			
1,2,2-Tetrachloroethane	24.5	1.0	ug/l	25.0	ND	98	60-140			
Tetrachloroethene	23.1	1.0	ug/l	25.0	ND	92	70-130			
Toluene	24.0	1.0	ug/l	25.0	ND	96	65-120			
,2,3-Trichlorobenzene	24.0	1.0	ug/l	25.0	ND	96	60-135			
T,2,4-Trichlorobenzene	24.3	1.0	ug/l	25.0	ND	97	55-140			
1,1,1-Trichloroethane	25.0	1.0	ug/l	25.0	ND	100	75-140			
,1,2-Trichloroethane	25.2	1.0	ug/l	25.0	ND	101	60-135			
richloroethene	26.7	1.0	ug/l	25.0	2.6	96	70-125			
Trichlorofluoromethane	25.6	1.0	ug/l	25.0	ND	102	50-150			
,2,3-Trichloropropane	23.4	1.0	ug/l	25.0	ND	94	60-140			
2,4-Trimethylbenzene	22.8	1.0	ug/l	25.0	0.47	89	60-125			
1,3,5-Trimethylbenzene	24.5	1.0	ug/l	25.0	ND	98	70-130			
Vinyl chloride	23.1	0.50	ug/l	25.0	ND	92	40-130			
-Xylene	22.8	1.0	ug/l	25.0	ND	91	65-125			
m,p-Xylenes	46.7	1.0	ug/l	50.0	ND	93	60-125			
Surrogate: Dibromofluoromethane	27.6		ug/l	25.0		110	80-120			
urrogate: Toluene-d8	27.7		ug/l	25.0		111	80-120			
urrogate: 4-Bromofluorobenzene	27.6		ug/l	25.0		110	80-120			

bel Mar Analytical, Irvine

Tatty Mata

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D26019 Extracted: 04/2	6/04									
Matrix Spike Dup Analyzed: 04/	26/04 (4D260	19-MSD1)			Source:	IND1510)-01			
Benzene	24.2	0.50	ug/l	25.0	0.55	95	70-120	2	20	
Bromobenzene	25.5	1.0	ug/l	25.0	ND	102	60-135	2	25	
Bromochloromethane	26.2	1.0	ug/l	25.0	ND	105	60-140	2	25	
Bromodichloromethane	26.1	1.0	ug/l	25.0	ND	104	70-140	4	20	
Bromoform	27.2	1.0	ug/l	25.0	ND	109	50-135	6	25	
Bromomethane	25.8	1.0	ug/l	25.0	ND	103	50-140	2	25	
n-Butylbenzene	26.6	1.0	ug/l	25.0	ND	106	70-135	8	20	
sec-Butylbenzene	26.8	1.0	ug/l	25.0	1.5	101	70-130	5	20	
tert-Butylbenzene	25.6	1.0	ug/l	25.0	ND	102	70-130	6	20	
Carbon tetrachloride	25.3	0.50	ug/l	25.0	ND	101	70-140	2	25	
Chlorobenzene	25.2	1.0	ug/l	25.0	ND	101	80-125	5	20	
Chloroethane	27.4	1.0	ug/l	25.0	ND	110	50-145	3	25	
Chloroform	25.8	1.0	ug/l	25.0	ND	103	70-130	2	20	
Chloromethane	25.6	1.0	ug/l	25.0	ND	102	30-145	2	30	
2-Chlorotoluene	24.4	1.0	ug/l	25.0	ND	98	65-145	3	25	
4-Chlorotoluene	25.1	1.0	ug/l	25.0	ND	100	70-145	8	20	
Dibromochloromethane	26.6	1.0	ug/l	25.0	ND	106	65-145	9	20	
1,2-Dibromo-3-chloropropane	24.8	5.0	ug/l	25.0	ND	99	50-150	9	25	
1,2-Dibromoethane (EDB)	26.2	1.0	ug/l	25.0	ND	105	70-125	8	20	
Dibromomethane	25.1	1.0	ug/l	25.0	ND	100	65-135	5	20	
1,2-Dichlorobenzene	25.0	1.0	ug/l	25.0	ND	100	70-130	5	20	
1,3-Dichlorobenzene	24.6	1.0	ug/l	25.0	ND	98	70-130	2	20	
1,4-Dichlorobenzene	24.1	1.0	ug/l	25.0	ND	96	75-120	2	20	
Dichlorodifluoromethane	26.4	5.0	ug/l	25.0	ND	106	10-160	1	30	
1,1-Dichloroethane	25.5	1.0	ug/l	25.0	ND	102	65-135	2	20	
1,2-Dichloroethane	26.5	0.50	ug/l	25.0	1.7	99	60-150	1	25	
1,1-Dichloroethene	25.8	1.0	ug/l	25.0	ND	103	65-145	3	25	
cis-1,2-Dichloroethene	50.1	1.0	ug/l	25.0	27	92	60-130	1	20	
trans-1,2-Dichloroethene	24.8	1.0	ug/l	25.0	0.32	98	60-135	0	20	
1,2-Dichloropropane	25.0	1.0	ug/l	25.0	ND	100	60-130	4	20	
1,3-Dichloropropane	25.4	1.0	ug/l	25.0	ND	102	65-140	7	25	
2,2-Dichloropropane	25.6	`1.0	ug/l	25.0	ND	102	60-150	2	20	
1,1-Dichloropropene	24.7	1.0	ug/l	25.0	ND	99	60-145	0	20	
cis-1,3-Dichloropropene	25.6	0.50	ug/l	25.0	ND	102	70-140	1	20	
trans-1,3-Dichloropropene	26.3	0.50	ug/l	25.0	ND	105	70-140	0	20	

Del Mar Analytical, Irvine

Patty Mata Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
-Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D26019 Extracted: 04/2	6/04									
	26/04 (4D260	19-MSD1)			Source:	IND1510)-01			
Ethylbenzene	28.8	1.0	ug/l	25.0	4.2	98	70-125	3	20	
rexachlorobutadiene	24.7	1.0	ug/l	25.0	ND	99	65-140	5	25	
opropylbenzene	28.4	1.0	ug/l	25.0	3.2	101	65-130	2	25	
p-Isopropyltoluene	24.2	1.0	ug/l	25.0	ND	97	70-130	6	20	
Methylene chloride	25.4	5.0	ug/l	25.0	ND	102	60-135	2	20	
aphthalene	27.6	1.0	ug/l	25.0	ND	110	50-145	10	25	
Propylbenzene	27.7	1.0	ug/l	25.0	2.2	102	70-135	2	20	
Styrene	0.480	1.0	ug/l	25.0	ND	2	60-145	11	25	M2
1,1,2-Tetrachloroethane	26.2	1.0	ug/l	25.0	ND	105	65-145	4	20	
1,2,2-Tetrachloroethane	27.2	1.0	ug/l	25.0	ND	109	60-140	10	25	
Tetrachloroethene	24.1	1.0	ug/l	25.0	ND	96	70-130	4	20	
Toluene	24.3	1.0	ug/l	25.0	ND	97	65-120	1	20	
2,3-Trichlorobenzene	25.6	1.0	ug/l	25.0	ND	102	60-135	6	20	
7,2,4-Trichlorobenzene	25.8	1.0	ug/l	25.0	ND	103	55-140	6	25	
1,1,1-Trichloroethane	26.2	1.0	ug/l	25.0	ND	105	75-140	5	20	
1,2-Trichloroethane	26.2	1.0	ug/l	25.0	ND	105	60-135	4	20	
richloroethene	27.2	1.0	ug/l	25.0	2.6	98	70-125	2	20	
Trichlorofluoromethane	25.7	1.0	ug/l	25.0	ND	103	50-150	0	25	
¹ 2,3-Trichloropropane	25.2	1.0	ug/l	25.0	ND	101	60-140	7	25	
2,4-Trimethylbenzene	22.9	1.0	ug/l	25.0	0.47	90	60-125	0	20	
1,3,5-Trimethylbenzene	25.6	1.0	ug/l	25.0	ND	102	70-130	4	20	
Vinyl chloride	22.9	0.50	ug/l	25.0	ND	92	40-130	1	25	
Xylene	24.9	1.0	ug/l	25.0	ND	100	65-125	9	20	
m,p-Xylenes	49.3	1.0	ug/l	50.0	ND	99	60-125	5	25	
Surrogate: Dibromofluoromethane	27.8		ug/l	25.0		111	80-120			
ırrogate: Toluene-d8	27.7		ug/l	25.0		111	80-120			
urrogate: 4-Bromofluorobenzene	28.4		ug/l	25.0		114	80-120			

el Mar Analytical, Irvine

Tatty Mata

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	Units	Spike Level		%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4D23066 Extracted: 04/23/6	04									
Blank Analyzed: 04/27/04 (4D2306	66-BLK1)									,
Cadmium	ND	0.0050	mg/l							
Chromium	ND	0.0050	mg/l							
Copper	ND	0.010	mg/l							
LCS Analyzed: 04/27/04 (4D23066	-BS1)									
Cadmium	0.991	0.0050	mg/l	1.00		99	80-120			
Chromium	0.959	0.0050	mg/l	1.00		96	80-120			
Copper	0.975	0.010	mg/l	1.00		98	80-120			
Matrix Spike Analyzed: 04/27/04 (4D23066-M	IS1)			Source:	IND1400	-02			
Cadmium	0.961	0.0050	mg/l	1.00	0.00050	96	75-125			
Chromium	0.957	0.0050	mg/l	1.00	ND	96	75-125			
Copper	1.04	0.010	mg/l	1.00	ND	104	75-125			
Matrix Spike Dup Analyzed: 04/28	/04 (4D230	66-MSD1)			Source:	IND1400	-02			
Cadmium	0.936	0.0050	mg/l	1.00	0.00050	94	75-125	3	20	
Chromium	0.965	0.0050	mg/l	1.00	ND	96	75-125	l	20	
Copper	1.06	0.010	mg/l	1.00	ND	106	75-125	2	20	

Del Mar Analytical, Irvine

Patty Mata Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200 Irvine, CA 92612

Attention: Sharon Wallin

Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04 Received: 04/21/04

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D21099 Extracted: 04/21/0	04									
_lank Analyzed: 04/22/04 (4D2109	9-BLK1)									
Chromium VI	ND	0.0010	mg/l							
CS Analyzed: 04/22/04 (4D21099	-BS1)									
hromium VI	0.0498	0.0010	mg/l	0.0500		100	90-110			
Matrix Spike Analyzed: 04/22/04 (4D21099-M	S1)			Source:	IND1400	-02			
hromium VI	0.0396	0.0010	mg/l	0.0500	ND	79	80-115			M2
Matrix Spike Dup Analyzed: 04/22/	'04 (4D2109	9-MSD1)			Source:	IND1400	-02			
Chromium VI	0.0404	0.0010	mg/l	0.0500	ND	81	80-115	2	15	
atch: 4D22061 Extracted: 04/22/0	04									
Duplicate Analyzed: 04/22/04 (4D2	2061-DUP1)			Source:	IND1400	-03			
4	6.20	NA	pH Units		6.18			0	5	

el Mar Analytical, Irvine

Ltty Mata

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200

Irvine, CA 92612 Attention: Sharon Wallin Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Report Number: IND1400

Sampled: 04/21/04

Received: 04/21/04

DATA QUALIFIERS AND DEFINITIONS

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
 M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

RL-1 Reporting limit raised due to sample matrix effects.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

Del Mar Analytical, IrvinePatty Mata
Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0621 (702) 798-3620 FAX (702) 798-3621

Camp, Dresser & McKee 18581 Teller Avenue, #200 Project ID: PTI, Phibro-Tech 2279

PhibroTech, April 2004

Sampled: 04/21/04

■Irvine, CA 92612 Attention: Sharon Wallin

Report Number: IND1400

Received: 04/21/04

Certification Summary

Del Mar Analytical, Irvine

نعت	Method	Matrix	NELAP	CA
	EPA 150.1	Water	X	X
	EPA 6010B-Diss	Water	X	X
	EPA 7199	Water	X	X
	EPA 8260B	Water	X	X

NV and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Pel Mar Analytical, Irvine Patty Mata Project Manager

Appendix D Completed COC Forms

CHAIN OF CUSTODY FORM

285z Allon Ave., Ilvine, CA 92600 (343) 261-102z (AA (949) 261-12zd 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0631 9850 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0632 62520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

				71 173113	0. 000											
Client Name/Address:		P.C). #:	ANALYSIS REQUIRED												
COM 1858/Tello Ste Irvine CA926/2	2300	ł	iject: 279 - Api		held Filtered)	.861						INDI	781			
Project Manager/Phone Nu	umber:	Pho	one Number	r:	····		عارك	3								
S. Wallin			949 <i>1</i> 5	z 5452		&	3	(CAVI)								
Sampler: E. Douglas		Fax	(Number: 9५ १ 7ร ^ะ		82408	3	Hd									
Sample Description	Sample Matrix	Container Type	# of Containers	Sampling Date/Time	Preservation									Special	Instructions	
PTI-TB01-061	W	400	2	4/20/04	HCI	X										
PTI - MWOID-OLEI	١	VOA	5.	1165	HCI None HNO, None	X	X	X								
PM-MWOIS-OGI		400	5	1240	HU03 HORE	×	X	×								
PTI-MW03-061		1,9	1.	1330	\	X	×	×								
PT1-MW060-061		1,	1	1415		X	X	×								
PTI-MWOGB-OUI				1450		X	X	X								
071-EBOI-061	4	1	V	1405	7	X	X	X								
			32													
										-	-					
		*									-				A	
Relinquished B		ate/Time:	160	Received By				Date/T	ime:				Time:	(check) 72 Hours		
Relinquished By	D	ate/Time:		,		•	Date/T	ime:		24 Hours 5 days						
Relinquished By	D	ate/Time:		/n 13a	h) 4	Date/T	ime:	162	ન Sam	ours ple Inte		normal _ (Check) On Ice:		400	

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-899 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0651 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

CHAIN OF CUSTODY FORM

Client Name/Address:		P.C	P.O. #:					ANALYSIS REQUIRED							
COM		Pro	oject:										COYI ONI		
18581 Teller Av		2005	279-1	pr ou	sompling								21101100		
Irvine CA 920	612		~ .		,		3								
Project Manager/Phone N	umber:	Ph	one Numbe	r:	***************************************		(S)	کی							
3 wallin			94975	2 5457	_	8		62							
Sampler:		Fay	x Number:			8160g	1	١٥١							
R. Douglas		' ' '		521357		O	اط	5				Ì			
Sample Description	Sample Matrix	Container	# of	Sampling	Preservation								Special Instructions		
PT+- TBUZ- QOI	Watrix	Type VOP	Containers	Date/Time	HCI	X									
PT1 - MW07 - CO1	1	AOV	5	0802	HNO3 None		×	X					>		
PII- DI-OLOI		PILY	1.	C3/15	i	X	X	X			1				
PT1 - MW145 - 061				0960		X	X	X					SATURATE CONTRACTOR CO		
PTI - MWOYA - OCOI			1	1000		X	X	×							
PN-MW35-061				0945		X	X	X							
190-100 M			1	1045		X	χ	X							
PM-EBUZ-OUI				1100		×	X	X							
PT1-MW150-061				1140		×	×	×							
PT- HW153-061				1255		×	×	×							
PT1-MW16-061			· .	1335		X	X	X							
PT1-MW37-061				1350		X	X	X							
PTI - MW09 - 061			· .	1415		X	X	×							
PTI-MW11-061		1	•	1450	•	X	X	×							
			67												
Relinquished B	<u>D</u>	ate/Time:	14 1735	Received By				Date/Ti	me:	Turn Sam	around in a Day _	Time:	(check) 72 Hours		
Relinquished By	Da	ate/Time:		Received By				Date/Ti	me:	24 F	lours _		5 days		
			Received By									48 hours normal Sample Integrity: (Check)			
Relinquished By	Da	ate/Time:		Date/Time: Sample 1210417:35 Intact				-	\sim	, , ,	On Ice: 3^(
							· U	141	112)	I iiitac			OII ICC.		

Appendix E Background Groundwater Concentrations

CDM

Results are from the most recent testing performed in accordance with state and federal drinking water regulations

PRIMARY STANDARDS MONITORED AT THE SOURCE-MANDATED FOR PUBLIC HEALTH

ND-83

	GROUN	DWATER	SURFAC	E WATER	PRIMARY	MCLG	MAJOR SOURCES IN DRINKING WATER
	AVERAGE	RANGE	AVERAGE	RANGE	MCL	or PHG	
ORGANIC CHEMICALS (µg/I)							
Toluene	ND	ND	ND	ND-4.0	150	150	Discharge from petroleum and chemical refineries
Frichloroethylene-TCE	0.7	ND-1.6	ND	ND	5	0.8 (c)	Discharge from metal degreasing sites and other factories
NORGANICS Sampled	from 1999 to 2001(d)					
Aluminum (mg/l)	NO	ND	0.14	ND-0,24	1	0.5 (c)	Erosion of natural deposits, surface water treatment process residue
Arsenic (µg/I)	5.5 (h)	ND-11	ND	ND-2.4	50	•	Erosion of natural deposits, glass and electronics production wastes
Fluoride (mg/l)	0.30	0.27-0.33	0.22	0.18-0.27	2	1 (c)	Erosion of natural deposits, water additive that promotes strong teeth
litrate (mg/l as N)	0.88	ND-1.75	ND	ND-0.59	10	10 (c)	Leaking from septic tanks and sewage; erosion of natural deposits
RADIOLOGICAL - pCI/I Analyzed	4 consecutive quar	ters every 4 ye	ars (results are	from 1998 to 2	(d) (100)		
Gross Alpha (f)	2.4	ND-6.3	4.1	1.2-6.3	15 (g)	•	Erosion of natural deposits
Gross Beta	NA	NA	5.4	ND-7.8	50 (g)		Decay of natural and man-made deposits
Combined Radium 226/228	NA	NA	ND	ND-1.5	5	-	Erosion of natural deposits
Jranium	4.8	4.0-5.5	2.9	ND-4.0	20 (g)	0.5 (c)	Erosion of natural deposits
MONITORED IN THE	E DISTRIBU	TION SY.	STEM	,			
	GROUN	IDWATER	SURFAC	E WATER	PRIMARY	MCLG	ד
	AVERAGE	RANGE	%<0.5	MUMIXAM	MCL	or PHG	· · · · · · · · · · · · · · · · · · ·
	777210700						

	71210100	TOTOL	74-0.0	MAAMOM	MOL	UITHG	1
Turbidity (ntu)	0.1	0.1-0.5	100%	0.2	11	•	Soil runoff
	GROUI	NDWATER	SURFAC	E WATER	PRIMARY	MCLG	
	AVERAGE	RANGE	AVERAGE	RANGE	MCL	or PHG	
Total Coliform Bacteria % Positive	0%	0%	0.06%	0-0,46%	5%	0%	Naturally present in the environment
Fecal Collform Bacteria % Positive	0%	0%	0%	0%	0%	0%	Human and animal fecal waste
No. of Acute Violations	0	0	0	0		·	

	GROU	NDWATER	SURFAC	E WATER	SECONDARY	MCLG	,
	AVERAGE	RANGE	AVERAGE	RANGE	MCL	or PHG	
Color (color unita)	<3	3	1	1-2	15		Naturally-occurring organic materials
Odor (threshold odor number)	1	1-2	(e)	(e)	3		Naturally-occurring organic materials

By-product of drinking water chlorination

36-69

•								_		
	i	GROU	NDWATER	SURFAC	CE WATER	PRIMARY	MCLG	1 '		
	· .	90% ile	#SITES	90% lle	#SITES	,		1		
			ABOVE AL		ABOVE AL	MCL	or PHG	<u>'</u>	•	
•	AT THE TAP 30 sites samp	led in 2001								
	Copper (mg/l)	0.16 (b)	0	ND	0	1.3 AL	0.17 (c)	Corrosion of household plumbing		-
	Lead (µg/l)	ND (b)	0	ИD	0	15 AL		Corrosion of household plumbing		

Trihalomethanes-TTHMS (µg/I) (a)

DEFINITIONS

SECONDARY STANDARDS MONITORED AT THE SOURCE-FOR AESTHETIC PURPOSES

	GROUN			SECONDARY	MCLG		
	AVERAGE RANGE		AVERAGE	RANGE	MCL	or PHG	
Chloride (mg/l)	50	34-66	79	72-83	500	•	Erosion of natural deposits, segwater influence
Conductivity (umhos/cm)	655	470-840	832	779-884	1600	•	Seawater influence, dissolved minerals
Sulfate (mg/l)	112	54-170	176	155-194	500		Erosion of natural deposits
Total Dissolved Solids (mg/l)	399	262-535	499	484-530	1000		Erosion of natural deposits
Manganese (µg/l)	ND	ND-25	ND	ND	50	-	Erosion of natural deposits

ADDITIONAL CHEMICALS OF INTEREST

	GROUN	IDWATER	SURFAC	E WATER
	AVERAGE	RANGE	AVERAGE	RANGE
pH (std unit)	7.8	7.5-8.0	8.1	8.0-8,1
Total Hardness (mg/l)	221	105-337	236	Z16-255
Calcium (mg/l)	67	34-99	58	51-61
Magnesium (mg/l)	13	4-22	24	21-25
Sodium (mg/l)	60	53-67	79	74-83
Potassium (mg/l)	2.9	2.2-3.6	3.9	3.5-4.2
Perchiorate (µg/l)	ND	ND	4	ND-5
Haloacetic Acids (µg/l)	NA	NA	19	9.5-24
Haloscetonitriles (µg/l)	NA	NA	7.7	4.8-13
Chloropiczin (µg/l)	NA	NA	ND	ND
Haloketones (µg/l)	NA	NA	1.6	0.7-3.2
Chloral hydrate (µg/l)	NA	NA	4.0	1.5-6.8
Total Organic Halogens (TOX) (µg/l)	NA	, NA	115	72-174
Cyanogen chloride (µg/l)	NA	NA	1.8	ND-3.1
Radon (pCII)	268	189-371	ND.	NO
Hexavaleri chromium (µg/l)	2.7	2.7	ND	ND
Total chromium screen (µg/l)	1.6	ND-3.2	NA	NA
Boron (µg/l)	77	ND-120	130	120-130
Vánadkum (µg/l)	3.5	ND-5.4	4.0	3-4

FOOTNOTES

- (e) Average and range calculated by running average.
- (b) 80th percentile from the most recent eampling at selected customer taps.
- (e) California Public Health Goal (PHG). Other advisory levels listed in this column are federal Maximum Contaminant Level Goals (MCLGs).
- (d) Indicates dates sampled for groundwater sources only.
- (e) Metropoliten Water District (MWD) of Southern California uses a flavor-profile test that more accurately detects odors. For more information, contact MWD at (213) 217-8850.
- (f) Gross eighs standard also includes Radium-226 standard.
- (g) MCL compliance based on 4 consecutive quarters of sampling. MCL standard is for combined Radium 226 ptus 228.
- Ih) While your drinking water meets the current standard for arsente, it does contain low levels of arsenic. The standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The California Department of Health Services continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health offcote such as skin damage and circulatory problems.

ABBREVIATIONS

mg/l = miligrams per liter or parts per million (equivalent to 3 drops in 42 gallons)
ug/l = micrograms per liter or parts per billion (equivalent to 1 drop in 42,000 gallons)

< = less than

lumbes/em = microrubos per centimeter

ND = constituent not detected at the reporting limit

NA - constituent not analyzed

pCIA - pico Curies per liter

Maximum Contaminant Lavai (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal or PHG: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the Catiomia Environmental Protection Agency.

**Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Primery Drinking Water Standard or PDWS. MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water freatment requirements.

Special note on Radon: Radon is a redicactive gas (hat you cannot laste, see or small, and is a known human carcinogen. It is found throughout the country. Radon can move up through the ground and into a home through crecks and holes in the foundation. Radon can build to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering and other household activities. Radon entering the home through tap water is a small source compared to radon entering the home through soil. If you are concerned about radon in your home, an easy and inexpensive last can show you how much redon is in your home's indoor eir. There are simple and inexpensive ways to fix your home if the level of radon in air is 4 picoCuries per liter (pCiVL) of air or higher. For additional information, call your State radon program or call EPA's Radon Hottine (500-SOS-RADON).

CITY OF SANTA FE SPRINGS 2001 ANNUAL WATER QUALITY REPORT

Since 1991, California water utilities have been providing information on water served to its consumers. This report is a snapshot of the tap water quality that we provided last year. Included are details about where your water comes from, how it is tested, what in it, and how it compares with state and federal limits. Although a lot of the information in this report is detailed and technical, we have made every effort to keep it readable. We strive to keep you informed about the quality of your water, and to provide a sliable and economic supply that meets all requirements. We are happy to report that your tap water meets or surpasses all mater quality standards for 2001.

Mhere Does My Tap Water Come From?

Your tap water comes from 2 sources: groundwater and surface water. We pump groundwater from local, deep wells. We also use Metropolitan Water District of Southern California's surface water from both the Colorado River and the State Water Project in northern California. These water sources supply our service area shown on the adjacent map. The quality of our groundwater and Metropolitan Water District's surface water supplies is presented in this report.

How is My Drinking Water Tested?

Your drinking water is tested regularly for unsafe levels of chemicals, radioactivity and bacteria at the source and in the distribution system. We test weekly, monthly, quarterly, annually or less often depending on the substance. State and federal laws allow us to test some substances less than once per year because their levels do not change frequently. All water quality tests are conducted by specially trained technicians in state-certified laboratories.

lat Are Drinking Water Standards?

he federal Environmental Protection Agency (EPA) limits the amount of certain substances in tap water. In California, the lartment of Health Services (DHS) regulates tap water quality by enforcing limits that are at least as stringent as the Federal im's. Historically, California limits are more stringent than the Federal counterparts.

rare are two types of limits, known as standards. Primary standards protect you from substances that could potentially affect health. Secondary standards regulate substances that affect the aesthetic qualities of water. Regulations set a Maximum standards that is lowed in drinking water. Water suppliers must not exceed MCLs to ensure water quality.

Lic Health Goals (PHGs) are set by the California Environmental Protection Agency. PHGs provide more information on the ality of drinking water to customers, and are similar to their federal counterparts, Maximum Contaminant Level Goals (MCLGs). The sand MCLGs are levels that are of an advisory nature only and nonenforceable. Both PHGs and MCLGs are concentrations substance at which there are no known or expected health risks.

w Do I Read the Water Quality Table?

wough we test for over 100 substances, regulations require us to report only those found in your water. The first column of the ter quality table lists substances detected in your water. The next columns list the average concentration and range of entrations found in your drinking water. Following are columns that list the MCL and PHG or MCLG, if appropriate. The last term describes the likely sources of substances in drinking water.

review the quality of your dinking water, compare the highest concentration and the MCL. Check for substances greater than ICL. Exceedence of a primary MCL does not usually constitute an immediate health threat. Rather, it requires testing the water more frequently for a short duration. If lest results show that the water continues to exceed the MCL, the water must be treated to remove the substance, or the source must be removed from service.

vny Do I See So Much Coverage in the News About the Quality Of Tap Water?

Il drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants water travels over the surface of the land or through the ground, it can pick up substances resulting from the presence imals or from human activity. The presence of contaminants does not necessarily indicate that water poses a health risk. In formation about contaminants and potential health effects can be obtained by calling the federal EPA's Safe Drinking Water (800-426-4791). You can get more information on tap water by logging on to these helpful web sites:

www.epa.gov/OGWDW (Federal EPA's web site)
www.dhs.cahwnet.gov/ps/ddwem (California DHS website)

hat Does the EPA Say About Drinking Water Quality?

e sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and lls. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some ies, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

ntaminants that may be present in source water include:

Microbial contaminants, including viruses and bacteria, that may come from sewage treatment plants, septic systems agricultural livestock operations, and wildlife;

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff industrial or domestic wastewater discharges, oil and gas production, mining or farming;

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

der to ensure that tap water is safe to drink, the EPA and the California Department of Health Services (DHS) presclations that limit the amount of certain contaminants in water provided by public water systems. DHS regulations also blish limits for contaminants in bottled water that must provide the same protection for public health.

uld | Take Additional Precautions?

e people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised one such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with NIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people diseek advice about drinking water from their health care providers. The EPA/Centers for Disease Control guidelines on inpriate means to lessen the risk of infection of *Cryptosporidium* and other microbial contaminants are available from the all EPA's Safe Drinking Water Hotline (800-426-4791).

Can I Participate in Decisions On Water Issues That Affect Me?

ublic is welcome to attend City Council meetings on the second and fourth Thursday of each month at 7 p.m.

Do I Contact My Water Agency If I Have Any Questions About Water Quality?

have specific questions about your tap water quality, please contact Ron Hughes at (562) 868-0511

Can I Conserve Water At Home?

stall a Low-flow Showerhead - save over 5 gallons of water per shower, or about 1,800 gallons per year per personl stall a low-flow toilet or water displacement device in your toilet - save 3.5 to 4.5 gallons on every flush! In only full loads in your dishwasher/washing machine - save 300 - 800 gallons of water every month! veep your sidewalks and driveway - save 150 gallons each time by sweeping instead of hosing! ater the lawn only when it needs it - save 30-50 gallons per day!

Appendix F Statistical Analysis

Appendix F-1 Statistical Tables

Table 1

Background Data

Constituent	Units	Location	Date		Result
Benzene	ug/l	MW-1S	07/01/1994	ND	0.5000
Benzene	ug/l	MW-1S	10/01/1994	ND	0.5000
Benzene	ug/l	MW-1S	01/01/1995	ND	0.5000
Benzene	ug/l	MW-1S	04/01/1995	ND	0.5000
Benzene	ug/l	MW-1S	01/01/1996	ND	0.5000
Benzene	ug/l	MW-1S	04/01/1996	ND	0.5000
Benzene	ug/l	MW-1S	07/01/1996	ND	0.5000
Benzene	ug/l	MW-1S	10/01/1996	ND	0.5000
Benzene	ug/i	MW-1S	01/01/1997	ND	0.5000
Benzene	ug/l	MW-1S	04/01/1997	ND	0.5000
Benzene	ug/l	MW-1S	07/01/1997	ND	0.5000
Benzene	ug/l	MW-1S	10/01/1997	ND	0.5000
Benzene	ug/l	MW-1S	01/01/1998	ND	0.5000
Benzene	ug/l	MW-1S	04/01/1998	ND	0.5000
Benzene	ug/l	MW-1S	07/01/1998	ND	0.5000
Benzene	ug/l	MW-1S	10/01/1998	ND	0.5000
Benzene	ug/l	MW-1S	01/01/1999	ND	0.5000
Benzene	ug/l	MW-1S	04/01/1999	ND	1.0000
Benzene	ug/l	MW-1S	07/01/1999	ND	1.0000
Benzene	ug/l	MW-1S	10/01/1999	ND	1.0000
Benzene	ug/l	MW-1S	01/01/2000	ND	1.0000
Benzene	ug/l	MW-1S	04/01/2000	ND	1.0000
Benzene	ug/l	MW-1S	10/01/2000	ND	1.0000
Benzene	ug/l	MW-1S	04/01/2001	ND	1.0000
Benzene	ug/l	MW-1S	07/01/2001	ND	1.0000
Benzene	ug/l	MW-1S	10/01/2001	ND	1.0000
Benzene	ug/l	MW-1S	01/01/2002	ND	1.0000
Benzene	ug/l	MW-1S	04/01/2002	ND	1.0000
Benzene	ug/l	MW-1S	07/01/2002	ND	1.0000
Benzene	ug/l	MW-1S	10/22/2002	ND	1.0000
Benzene	ug/l	MW-1S	01/08/2003	ND	0.5000
Benzene	ug/l	MW-1S	04/23/2003	ND	0.5000
Benzene	ug/l	MW-1S	07/29/2003	ND	0.5000
Benzene	ug/l	MW-1S	01/21/2004	ND	0.5000
Benzene	ug/l	MW-1S	04/20/2004	ND	0.5000
Cadmium	mg/L	MW-1S	07/01/1994	ND	0.0050
Cadmium	mg/L	MW-1S	10/01/1994	ND	0.0050
Cadmium	mg/L	MW-1S	01/01/1995	ND	0.0050
Cadmium	mg/L	MW-1S	04/01/1995	ND	0.0010
Cadmium	mg/L	MW-1S	01/01/1996	ND	0.0050
Cadmium	mg/L	MW-1S	04/01/1996	ND	0.0050
Cadmium	mg/L	MW-1S	07/01/1996	ND	0.0050
Cadmium	mg/L	MW-1S	10/01/1996	ND	0.0050
Cadmium	mg/L	MW-1S	01/01/1997	ND	0.0050
Cadmium	mg/L	MW-1S	04/01/1997	ND	0.0050
Cadmium	mg/L	MW-1S	07/01/1997	ND	0.0050
Cadmium	mg/L	MW-1S	10/01/1997	ND	0.0050
Cadmium	mg/L	MW-1S	01/01/1998	ND	0.0050
Cadmium	mg/L	MW-1S	04/01/1998	ND	0.0050
Cadmium	mg/L	MW-1S	07/01/1998	ND	0.0050
Cadmium	mg/L	MW-1S	10/01/1998	ND	0.0050
Cadmium	mg/L	MW-1S	01/01/1999	ND	0.0050
Cadmium	mg/L	MW-1S	04/01/1999	ND	0.0050
Cadmium	mg/L	MW-1S	07/01/1999	ND	0.0050
Cadmium	mg/L	MW-1S	10/01/1999	ND	0.0050

^{* -} Outlier for that location and constituent. ND = Not detected, result = detection limit.

Table 1
Background Data

Constituent	Units	Location	Date		Result	
Cadmium	mg/L	MW-1S	01/01/2000	ND	0.0050	
Cadmium	mg/L	MW-1S	04/01/2000	ND	0.0050	
Cadmium	mg/L	MW-1S	10/01/2000	ND	0.0050	
Cadmium	mg/L	MW-1S	04/01/2001	ND	0.0050	
Cadmium	mg/L	MW-1S	07/01/2001	ND	0.0050	ĺ
Cadmium	mg/L	MW-1S	10/01/2001	ND	0.0050	
Cadmium	mg/L	MW-1S	01/01/2002	ND	0.0050	
Cadmium	mg/L	MW-1S	04/01/2002	ND	0.0050	
Cadmium	mg/L	MW-1S	07/01/2002	ND	0.0050	
Cadmium	mg/L	MW-1S	10/22/2002	ND	0.0050	
Cadmium	mg/L	MW-1S	01/08/2003	ND	0.0050	
Cadmium	mg/L	MW-1S	04/23/2003		0.0100	
Cadmium	mg/L	MW-1S	07/29/2003		0.0100	
Cadmium	mg/L	MW-1S	01/21/2004	ND	0.0050	
Cadmium	mg/L	MW-1S	04/20/2004	ND	0.0050	
Chromium	mg/L	MW-1S	07/01/1994	ND	0.0100	-
Chromium	mg/L	MW-1S	10/01/1994	ND	0.0100	
Chromium	mg/L	MW-1S	01/01/1995	ND	0.0100	
Chromium	mg/L	MW-1S	04/01/1995	ND	0.0100	
Chromium	mg/L	MW-1S	01/01/1996	ND	0.0100	
Chromium	mg/L	MW-1S	04/01/1996	ND	0.0100	l
+		MW-1S	07/01/1996	ND	0.0100	
Chromium Chromium	mg/L	MW-1S		ND	0.0100	
	mg/L		10/01/1996 01/01/1997			
Chromium	mg/L	MW-1S		ND	0.0100	l
Chromium	mg/L	MW-1S	04/01/1997	ND	0.0100	
Chromium	mg/L	MW-1S	07/01/1997	ND	0.0100	
Chromium	mg/L	MW-1S	10/01/1997	ND	0.0100	
Chromium	mg/L	MW-1S	01/01/1998	ND	0.0100	
Chromium	mg/L	MW-1S	04/01/1998	ND	0.0100	
Chromium	mg/L	MW-1S	07/01/1998	ND	0.0100	
Chromium	mg/L	MW-1S	10/01/1998	ND	0.0100	
Chromium	mg/L	MW-1S	01/01/1999	ND	0.0100	
Chromium	mg/L	MW-1S	04/01/1999	ND	0.0100	
Chromium	mg/L	MW-1S	07/01/1999	ND	0.0100	
Chromium	mg/L	MW-1S	10/01/1999	ND	0.0100	
Chromium	mg/L	MW-1S	01/01/2000	ND	0.0100	
Chromium	mg/L	MW-1S	04/01/2000	ND	0.0100	
Chromium	mg/L	MW-1S	10/01/2000	ND	0.0100	
Chromium	mg/L	MW-1S	04/01/2001	ND	0.0100	
Chromium	mg/L	MW-1S	07/01/2001	ND	0.0100	
Chromium	mg/L	MW-1S	10/01/2001	ND	0.0100	
Chromium	mg/L	MW-1S	01/01/2002	ND	0.0100	
Chromium	mg/L	MW-1S	04/01/2002	ND	0.0100	
Chromium	mg/L	MW-1S	07/01/2002	ND	0.0100	
Chromium	mg/L	MW-1S	10/22/2002	ND	0.0100	
Chromium	mg/L	MW-1S	04/23/2003		0.0100	
Chromium	mg/L	MW-1S	07/29/2003		0.0100	
Chromium	mg/L	MW-1S	01/21/2004	ND	0.0050	
Chromium	mg/L	MW-1S	04/20/2004	ND	0.0050	ĺ
Chromium (vi)	mg/L	MW-1S	07/01/1994	ND	0.0200	1
Chromium (vi)	mg/L	MW-1S	10/01/1994	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	01/01/1995	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	04/01/1995	ND	0.0200	ĺ
Chromium (vi)		MW-1S	01/01/1996	ND	0.0200	
Chromium (vi)	mg/L mg/L	MW-1S	04/01/1996	ND	0.0200	
Cintoffilatif (VI)	IIIg/L	114144-19	1 04/01/1990	IND	0.0200	1_

^{* -} Outlier for that location and constituent. ND = Not detected, result = detection limit.

Table 1

Background Data

Constituent	Units	Location	Date		Result	
Chromium (vi)	mg/L	MW-1S	07/01/1996	ND	0.0100	
Chromium (vi)	mg/L	MW-1S	10/01/1996	ND	0.0100	
Chromium (vi)	mg/L	MW-1S	01/01/1997	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	04/01/1997	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	07/01/1997	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	10/01/1997	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	01/01/1998	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	04/01/1998	ND	0.0200	i
Chromium (vi)	mg/L	MW-1S	07/01/1998	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	10/01/1998	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	01/01/1999	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	04/01/1999	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	07/01/1999	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	10/01/1999	ND	0.0100	
Chromium (vi)	mg/L	MW-1S	01/01/2000	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	04/01/2000	ND	0.0100	
Chromium (vi)	mg/L	MW-1S	10/01/2000	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	04/01/2001	ND	0.0020	
Chromium (vi)	mg/L	MW-1S	07/01/2001	ND	0.0020	
Chromium (vi)	mg/L	MW-1S	10/01/2001		0.0062	
Chromium (vi)	mg/L	MW-1S	01/01/2002	ND	0.0200	
Chromium (vi)	mg/L	MW-1S	04/01/2002	ND	0.0020	
Chromium (vi)	mg/L	MW-1S	07/01/2002		0.0018	
Chromium (vi)	mg/L	MW-1S	10/22/2002	ND	0.0010	
Chromium (vi)	mg/L	MW-1S	01/08/2003	ND	0.0010	
Chromium (vi)	mg/L	MW-1S	04/23/2003	ND	0.0010	
Chromium (vi)	mg/L	MW-1S	07/29/2003	ND	0.0010	
Chromium (vi)	mg/L	MW-1S	01/21/2004	ND	0.0010	
Chromium (vi)	mg/L	MW-1S	04/20/2004	ND	0.0010	
Copper	mg/L	MW-1S	07/01/1994	ND	0.0200	
Copper	mg/L	MW-1S	10/01/1994	ND	0.0200	
Copper	mg/L	MW-1S	01/01/1995	ND	0.0200	
Copper	mg/L	MW-1S	04/01/1995	ND	0.0200	
Copper	mg/L	MW-1S	01/01/1996	ND	0.0200	
Copper	mg/L	MW-1S	04/01/1996	ND	0.0200	
Copper	mg/L	MW-1S	07/01/1996	ND	0.0200	
Copper	mg/L	MW-1S	10/01/1996	ND	0.0200	
Copper	mg/L	MW-1S	01/01/1997	110	0.0200	
Copper	mg/L	MW-1S	04/01/1997	ND	0.0200	
	mg/L	MW-1S	07/01/1997	ND	0.0200	
Copper Copper	mg/L	MW-1S	10/01/1997	.,,	0.0200	
Copper	mg/L	MW-1S	01/01/1998	ND	0.0200	
Copper	mg/L	MW-1S	04/01/1998	.,,	0.0200	
	mg/L	MW-1S	07/01/1998	ND	0.0200	
Copper Copper	mg/L	MW-1S	10/01/1998	ND	0.0200	
Copper	mg/L	MW-1S	01/01/1999	ND	0.0200	
1 ~		MW-1S	04/01/1999	ND	0.0200	
Copper	mg/L mg/L	MW-1S	07/01/1999	.10	0.0500	
Copper	mg/L	MW-1S	10/01/1999	ND	0.0200	
Copper		MW-1S	01/01/2000	ND	0.0200	
Copper	mg/L	MW-1S	04/01/2000	ND	0.0200	
Copper	mg/L			ND	0.0200	
Copper	mg/L	MW-1S	10/01/2000		0.0200	
Copper	mg/L	MW-1S	04/01/2001	ND		
Copper	mg/L	MW-1S	07/01/2001	ND	0.0200	
Copper	mg/L	MW-1S	10/01/2001	ND	0.0200	

^{* -} Outlier for that location and constituent. ND = Not detected, result = detection limit.

3

Table 1
Background Data

Constituent	Units	Location	Date		Result
Copper	mg/L	MW-1S	01/01/2002	ND	0.0200
Copper	mg/L	MW-1S	04/01/2002	ND	0.0200
Copper	mg/L	MW-1S	07/01/2002	ND	0.0200
Copper	mg/L	MW-1S	10/22/2002	ND	0.0200
Copper	mg/L	MW-1S	01/08/2003	ND	0.0100
Copper	mg/L	MW-1S	04/23/2003		0.0200
Copper	mg/L	MW-1S	07/29/2003		0.0300
Copper	mg/L	MW-1S	01/21/2004	ND	0.0100
Copper	mg/L	MW-1S	04/20/2004	ND	0.0100
Ethylbenzene	ug/l	MW-1S	07/01/1994	ND	1.0000
Ethylbenzene	ug/l	MW-1S	10/01/1994	ND	1.0000
Ethylbenzene	ug/l	MW-1S	01/01/1995	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/01/1995		1.3000
Ethylbenzene	ug/l	MW-1S	01/01/1996		1.7000
Ethylbenzene	ug/l	MW-1S	04/01/1996		3.4000
Ethylbenzene	ug/l	MW-1S	07/01/1996		2.2000
Ethylbenzene	ug/l	MW-1S	10/01/1996		2.1000
Ethylbenzene	ug/l	MW-1S	01/01/1997	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/01/1997	.,,,	1.4000
Ethylbenzene	ug/l	MW-1S	07/01/1997	ND	1.0000
Ethylbenzene	ug/l	MW-1S	10/01/1997	ND	1.0000
Ethylbenzene	ug/l	MW-1S	01/01/1998	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/01/1998	ND	1.0000
Ethylbenzene		MW-1S	07/01/1998	ND	1.0000
Ethylbenzene	ug/l ug/l	MW-1S	10/01/1998	ND	1.0000
		MW-1S		ן אַאו	
Ethylbenzene	ug/l	MW-1S	01/01/1999	ND	2.0000 1.0000
Ethylbenzene	ug/l		04/01/1999	ND	
Ethylbenzene	ug/l	MW-1S	07/01/1999	ND	1.0000
Ethylbenzene	ug/l	MW-1S	10/01/1999	ND	1.0000
Ethylbenzene	ug/l	MW-1S	01/01/2000	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/01/2000	ND	1.0000
Ethylbenzene	ug/l	MW-1S	10/01/2000	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/01/2001	ND	1.0000
Ethylbenzene	ug/l	MW-1S	07/01/2001	ND	1.0000
Ethylbenzene	ug/l	MW-1S	10/01/2001	ND	1.0000
Ethylbenzene	ug/l	MW-1S	01/01/2002	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/01/2002	ND	1.0000
Ethylbenzene	ug/l	MW-1S	07/01/2002	ND	1.0000
Ethylbenzene	ug/l	MW-1S	10/22/2002	ND	1.0000
Ethylbenzene	ug/l	MW-1S	01/08/2003	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/23/2003	ND	1.0000
Ethylbenzene	ug/l	MW-1S	07/29/2003	ND	1.0000
Ethylbenzene	ug/l	MW-1S	01/21/2004	ND	1.0000
Ethylbenzene	ug/l	MW-1S	04/20/2004	ND	1.0000
Toluene	ug/l	MW-1S	07/01/1994	ND	1.0000
Toluene	ug/l	MW-1S	01/01/1995	ND	1.0000
Toluene	ug/l	MW-1S	04/01/1995	ND	1.0000
Toluene	ug/l	MW-1S	01/01/1996	ND	1.0000
Toluene	ug/l	MW-1S	04/01/1996	ND	1.0000
Toluene	ug/l	MW-1S	07/01/1996	ND	1.0000
Toluene	ug/l	MW-1S	10/01/1996	ND	1.0000
Toluene	ug/l	MW-1S	01/01/1997	ND	1.0000
Toluene	ug/l	MW-1S	04/01/1997	ND	1.0000
Toluene		MW-1S	07/01/1997	ND	1.0000
Toluene	ug/l	MW-1S	10/01/1997		
roluene	ug/l	TIMIAA-12	10/01/1997	ND	1.0000

^{* -} Outlier for that location and constituent. ND = Not detected, result = detection limit.

Table 1

Background Data

Constituent	Units	Location	Date		Result
Toluene	ug/l	MW-1S	01/01/1998	ND	1.0000
Toluene	ug/l	MW-1S	04/01/1998	ND	1.0000
Toluene	ug/l	MW-1S	07/01/1998	ND	1.0000
Toluene	ug/l	MW-1S	10/01/1998	ND	1.0000
Toluene	ug/l	MW-1S	01/01/1999	ND	2.0000
Toluene	ug/l	MW-1S	04/01/1999	ND	1.0000
Toluene	ug/l	MW-1S	07/01/1999	ND	1.0000
Toluene	ug/l	MW-1S	10/01/1999	ND	1.0000
Toluene	ug/l	MW-1S	01/01/2000	ND	1.0000
Toluene	ug/l	MW-1S	04/01/2000	ND	1.0000
Toluene	ug/l	MW-1S	10/01/2000	ND	1.0000
Toluene	ug/l	MW-1S	04/01/2001	ND	1.0000
Toluene	ug/l	MW-1S	07/01/2001	ND	1.0000
Toluene	ug/l	MW-1S	10/01/2001	ND	1.0000
Toluene	ug/l	MW-1S	01/01/2002	ND	1.0000
Toluene	ug/l	MW-1S	04/01/2002	ND	1.0000
Toluene	ug/l	MW-1S	07/01/2002	ND	1.0000
Toluene	ug/l	MW-1S	10/22/2002	ND	1.0000
Toluene	ug/l	MW-1S	01/08/2003	ND	1.0000
Toluene	ug/l	MW-1S	04/23/2003	ND	1.0000
Toluene	ug/l	MW-1S	07/29/2003	ND	1.0000
Toluene	ug/l	MW-1S	01/21/2004	ND	1.0000
Toluene	ug/l	MW-1S	04/20/2004	ND	1.0000
	ug/l	MW-1S	07/01/1994	ND	1.0000
Total xylenes	ug/l	MW-1S	10/01/1994	ND	5.8000
Total xylenes		MW-1S	01/01/1995	ND	1.0000
Total xylenes	ug/l	MW-1S	04/01/1995	ND	1.0000
Total xylenes	ug/l	MW-1S	01/01/1996	ושו	5.1000
Total xylenes	ug/l	MW-1S	04/01/1996		4.9000
Total xylenes	ug/l	MW-1S	07/01/1996		3.7000
Total xylenes	ug/l			1	2.8000
Total xylenes	ug/l	MW-1S	10/01/1996		2.0000
Total xylenes	ug/l	MW-1S	01/01/1997		1.2000
Total xylenes	ug/l	MW-1S	04/01/1997	ND	
Total xylenes	ug/l	MW-1S	07/01/1997	ND	1.0000
Total xylenes	ug/l	MW-1S	10/01/1997	ND	1.0000
Total xylenes	ug/l	MW-1S	01/01/1998	ND	1.0000
Total xylenes	ug/l	MW-1S	04/01/1998	ND	1.0000
Total xylenes	ug/l	MW-1S	07/01/1998	ND	1.0000
Total xylenes	ug/l	MW-1S	10/01/1998	ND	1.0000
Total xylenes	ug/l	MW-1S	01/01/1999	ND	2.0000
Total xylenes	ug/l	MW-1S	04/01/1999	ND	2.0000
Total xylenes	ug/l	MW-1S	07/01/1999	ND	1.0000
Total xylenes	ug/l	MW-1S	10/01/1999	ND	2.0000
Total xylenes	ug/l	MW-1S	01/01/2000	ND	1.0000
Total xylenes	ug/l	MW-1S	04/01/2000	ND	1.0000
Total xylenes	ug/l	MW-1S	10/01/2000	ND	1.0000
Total xylenes	ug/l	MW-1S	04/01/2001	ND	1.0000
Total xylenes	ug/l	MW-1S	07/01/2001	ND	1.0000
Total xylenes	ug/l	MW-1S	10/01/2001	ND	1.0000
Total xylenes	ug/l	MW-1S	01/01/2002	ND	1.0000
Total xylenes	ug/l	MW-1S	04/01/2002	ND	1.0000
Total xylenes	ug/l	MW-1S	07/01/2002	ND	2.0000
Total xylenes	ug/l	MW-1S	10/22/2002	ND	2.0000
Total xylenes	ug/l	MW-1S	01/08/2003	ND	2.0000
Total xylenes	ug/l	MW-1S	04/23/2003	ND	2.0000

^{* -} Outlier for that location and constituent. ND = Not detected, result = detection limit.

Table 1
Background Data

Constituent	Units	Location	Date		Result							
Total xylenes	ug/l	MW-1S	07/29/2003	ND	2.0000							
Total xylenes	ug/l	MW-1S	01/21/2004	ND	2.0000	ĺ						
Total xylenes	ug/l	MW-1S	04/20/2004	ND	2.0000	ĺ						
Trichloroethene	ug/l	MW-1S	07/01/1994		7.9000							
Trichloroethene	ug/l	MW-1S	10/01/1994		13.0000	ĺ						
Trichloroethene	ug/l	MW-1S	01/01/1995		5.2000	ĺ						
Trichloroethene	ug/l	MW-1S	04/01/1995		4.4000	ĺ						
Trichloroethene	ug/l	MW-1S	01/01/1996		8.4000	ĺ						
Trichloroethene	ug/l	MW-1S	04/01/1996		2.9000	ĺ						
Trichloroethene	ug/l	MW-1S	07/01/1996		9.7000							
Trichloroethene	ug/l	MW-1S	10/01/1996		16.0000	1						
Trichloroethene	ug/l	MW-1S	01/01/1997		6.0000							
Trichloroethene	ug/l	MW-1S	04/01/1997		15.0000	1						
Trichloroethene	ug/l	MW-1S	07/01/1997		14.0000	ĺ						
Trichloroethene	ug/l	MW-1S	10/01/1997		12.0000							
Trichloroethene	ug/l	MW-1S	01/01/1998		12.0000	ĺ						
Trichloroethene	ug/l	MW-1S	04/01/1998		14.0000							
Trichloroethene	ug/l	MW-1S	07/01/1998		14.0000							
Trichloroethene	ug/l	MW-1S	10/01/1998		7.8000							
Trichloroethene	ug/l	MW-1S	01/01/1999		10.0000							
Trichloroethene	ug/l	MW-1S	04/01/1999		7.2000							
Trichloroethene	ug/l	MW-1S	07/01/1999		9.1000							
Trichloroethene	ug/l	MW-1S	10/01/1999		9.1000							
Trichloroethene	ug/i	MW-1S	01/01/2000		9.9000							
Trichloroethene	ug/l	MW-1S	04/01/2000		16.0000							
Trichloroethene	ug/l	MW-1S	10/01/2000		8.9000							
Trichloroethene	ug/l	MW-1S	04/01/2001		13.0000							
Trichloroethene	ug/l	MW-1S	07/01/2001		2.1000							
Trichloroethene	ug/l	MW-1S	10/01/2001		13.0000							
Trichloroethene	ug/l	MW-1S	01/01/2002		7.0000							
Trichloroethene	ug/l	MW-1S	04/01/2002		5.3000							
Trichloroethene	ug/l	MW-1S	07/01/2002		6.2000							
Trichloroethene	ug/l	MW-1S	10/22/2002		8.3000							
Trichloroethene	ug/l	MW-1S	01/08/2003	l	11.0000							
Trichloroethene	ug/l	MW-1S	04/23/2003	j	11.0000	ı						
Trichloroethene	ug/l	MW-1S	07/29/2003		13.0000	ı						
Trichloroethene	ug/i	MW-1S	01/21/2004	ĺ	18.0000	ı						
Trichloroethene	ug/l	MW-1S	04/20/2004		13.0000							

^{* -} Outlier for that location and constituent. ND = Not detected, result = detection limit.

Table 2 **Most Current Onsite/Downgradient Monitoring Data**

Constituent	Units	Location	Date		Result		Pred. Limit
Benzene	ug/l	MW-11	04/21/2004	ND	1.0000	<u> </u>	0.500
Benzene	ug/l	MW-14S	04/21/2004		2.2000	*	0.500
Benzene	ug/l	MW-15D	04/21/2004	ND	0.5000		0.500
Benzene	ug/l	MW-15S	04/21/2004	ND	0.5000		0.500
Benzene	ug/l	MW-16	04/21/2004	ND	0.5000		0.500
Benzene	ug/l	MW-1D	04/20/2004		0.5800	*	0.500
Benzene	ug/l	MW-3	04/20/2004		1.2000	*	0.500
Benzene	ug/l	MW-4	04/21/2004		2.2000	*	0.500
Benzene	ug/l	MW-4A	04/21/2004	ND	0.5000		0.500
Benzene	ug/l	MW-6B	04/20/2004	ND	0.5000		0.500
Benzene	ug/l	MW-6D	04/20/2004	ND	0.5000		0.500
Benzene	ug/l	MW-7	04/21/2004	ND	0.5000		0.500
Benzene	ug/l	MW-9	04/21/2004	ND	1.0000		0.500
Cadmium	mg/L	MW-11	04/21/2004	ND	0.0050		0.010
Cadmium	mg/L	MW-14S	04/21/2004		0.0100		0.010
Cadmium	mg/L	MW-15D	04/21/2004	ND	0.0050		0.010
Cadmium	mg/L	MW-15S	04/21/2004	110	0.0077		0.010
Cadmium	mg/L	MW-16	04/21/2004	ND	0.0050		0.010
Cadmium	mg/L	MW-1D	04/20/2004	ND	0.0050		0.010
Cadmium	mg/L	MW-3	04/20/2004	ND	0.0050		0.010
	mg/L	MW-4	04/21/2004	ND	530.2100	*	0.010
Cadmium		MW-4A	04/21/2004	ND	0.0050		0.010
Cadmium	mg/L	1	04/20/2004	ND			0.010
Cadmium	mg/L	MW-6B			0.0050		
Cadmium	mg/L	MW-6D	04/20/2004	ND	0.0050		0.010
Cadmium	mg/L	MW-7	04/21/2004	ND	0.0050		0.010
Cadmium	mg/L	MW-9	04/21/2004	ND	0.0050		0.010
Chromium	mg/L	MW-11	04/21/2004	ND	0.0050	*	0.010
Chromium	mg/L	MW-14S	04/21/2004		0.3100	_	0.010
Chromium	mg/L	MW-15D	04/21/2004		0.0067		0.010
Chromium	mg/L	MW-15S	04/21/2004	ND	0.0050		0.010
Chromium	mg/L	MW-16	04/21/2004	ND	0.0050		0.010
Chromium	mg/L	MW-1D	04/20/2004	ND	0.0050		0.010
Chromium	mg/L	MW-3	04/20/2004	ND	0.0050	١. ا	0.010
Chromium	mg/L	MW-4	04/21/2004		481.0000	*	0.010
Chromium	mg/L	MW-4A	04/21/2004	ND	0.0050		0.010
Chromium	mg/L	MW-6B	04/20/2004	ND	0.0050		0.010
Chromium	mg/L	MW-6D	04/20/2004	ND	0.0050		0.010
Chromium	mg/L	MW-7	04/21/2004	ND	0.0050		0.010
Chromium	mg/L	MW-9	04/21/2004		855.9333	*	0.010
Chromium (vi)	mg/L	MW-11	04/21/2004	ND	0.0010		0.020
Chromium (vi)	mg/L	MW-14S	04/21/2004		0.3300	*	0.020
Chromium (vi)	mg/L	MW-15D	04/21/2004		0.0070		0.020
Chromium (vi)	mg/L	MW-15S	04/21/2004	ND	0.0010		0.020
Chromium (vi)	mg/L	MW-16	04/21/2004	ND	0.0010		0.020
Chromium (vi)	mg/L	MW-1D	04/20/2004	ND	0.0010		0.020
Chromium (vi)	mg/L	MW-3	04/20/2004	ND	0.0010		0.020
Chromium (vi)	mg/L	MW-4	04/21/2004		530.6667	*	0.020
Chromium (vi)	mg/L	MW-4A	04/21/2004		0.0056		0.020
Chromium (vi)	mg/L	MW-6B	04/20/2004		0.0031		0.020
Chromium (vi)	mg/L	MW-6D	04/20/2004		0.0032		0.020
Chromium (vi)	mg/L	MW-7	04/21/2004		0.0010		0.020
Chromium (vi)	mg/L	MW-9	04/21/2004		1145.6670	*	0.020
Copper	mg/L	MW-11	04/21/2004	ND	0.0100		0.050
Copper	mg/L	MW-14S	04/21/2004	.,0	0.0200		0.050
Cobbei		1.71.1.170	3712112004	<u></u>	3.0200		0.000

^{* -} Current value failed.

***** - Insufficient background data to compute prediction limit.

ND = Not Detected, result = detection limit.

Table 2 Most Current Onsite/Downgradient Monitoring Data

Constituent	Units	Location	Date		Result	Pred. Limit
Copper	mg/L	MW-15D	04/21/2004	ND	0.0100	0.0500
Copper	mg/L	MW-15S	04/21/2004	ND	0.0100	0.0500
Copper	mg/L	MW-16	04/21/2004	ND	0.0100	0.0500
Copper	mg/L	MW-1D	04/20/2004		0.0400	0.0500
Copper	mg/L	MW-3	04/20/2004	ND	0.0100	0.0500
Copper	mg/L	MW-4	04/21/2004		0.0350	0.0500
Copper	mg/L	MW-4A	04/21/2004		0.0400	0.0500
Copper	mg/L	MW-6B	04/20/2004	ND	0.0100	0.0500
Copper	mg/L	MW-6D	04/20/2004	ND	0.0100	0.0500
Copper	mg/L	MW-7	04/21/2004	ND	0.0100	0.0500
Copper	mg/L	MW-9	04/21/2004	ND	0.0100	0.0500
Ethylbenzene	ug/l	MW-11	04/21/2004		3.6000	* 3.4000
Ethylbenzene	ug/l	MW-14S	04/21/2004	ND	4.0000	3.4000
Ethylbenzene	ug/l	MW-15D	04/21/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-15S	04/21/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-16	04/21/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-1D	04/20/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-3	04/20/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-4	04/21/2004	ND	3.2500	3.4000
Ethylbenzene	ug/l	MW-4A	04/21/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-6B	04/20/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-6D	04/20/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-7	04/21/2004	ND	1.0000	3.4000
Ethylbenzene	ug/l	MW-9	04/21/2004	ND	2.0000	3.4000
Toluene	ug/l	MW-11	04/21/2004	ND	2.0000	1.0000
Toluene	ug/l	MW-14S	04/21/2004	ND	4.0000	1.0000
Toluene	ug/l	MW-15D	04/21/2004	ND	1.0000	1.0000
Toluene	ug/l	MW-15S	04/21/2004	ND	1.0000	1.0000
Toluene		MW-16	04/21/2004	ND	1.0000	
Toluene	ug/l ug/l	MW-1D	04/20/2004	ND	1.0000	1.0000
		MW-3				1.0000
Toluene	ug/l	MW-4	04/20/2004	ND	1.0000	1.000
Toluene	ug/l		04/21/2004	ND	3.2500	1.0000
Toluene	ug/l	MW-4A	04/21/2004	ND	1.0000	1.0000
Toluene	ug/l	MW-6B	04/20/2004	ND	1.0000	1.0000
Toluene	ug/l	MW-6D	04/20/2004	ND	1.0000	1.0000
Toluene	ug/l	MW-7	04/21/2004	ND	1.0000	1.000
Toluene	ug/l	MW-9	04/21/2004	ND	2.0000	1.0000
Total xylenes	ug/l	MW-11	04/21/2004	ND	4.0000	5.8000
Total xylenes	ug/i	MW-14S	04/21/2004	ND	8.0000	5.8000
Total xylenes	ug/l	MW-15D	04/21/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-15S	04/21/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-16	04/21/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-1D	04/20/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-3	04/20/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-4	04/21/2004	ND	6.5000	5.800
Total xylenes	ug/l	MW-4A	04/21/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-6B	04/20/2004	ND	2.0000	5.8000
Total xylenes	ug/i	MW-6D	04/20/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-7	04/21/2004	ND	2.0000	5.8000
Total xylenes	ug/l	MW-9	04/21/2004	ND	4.0000	5.8000
Trichloroethene	ug/i	MW-11	04/21/2004		250.0000	24.5666
Trichloroethene	ug/l	MW-14S	04/21/2004			24.5666
Trichloroethene	ug/l	MW-15D	04/21/2004		3.6000	24.5666
Trichloroethene	ug/l	MW-15S	04/21/2004			24.5666

^{* -} Current value failed.

***** - Insufficient background data to compute prediction limit.

ND = Not Detected, result = detection limit.

Table 2 **Most Current Onsite/Downgradient Monitoring Data**

Constituent	Units	Location	Date	Result		Pred. Limit	
Trichloroethene	ug/l	MW-16	04/21/2004	19.0000		24.5666	
Trichloroethene	ug/l	MW-1D	04/20/2004	6.9000		24.5666	
Trichloroethene	ug/l	MW-3	04/20/2004	180.0000	*	24.5666	
Trichloroethene	ug/l	MW-4	04/21/2004	220.0000	*	24.5666	
Trichloroethene	ug/l	MW-4A	04/21/2004	20.0000		24.5666	
Trichloroethene	ug/l	MW-6B	04/20/2004	15.0000	ĺ	24.5666	
Trichloroethene	ug/l	MW-6D	04/20/2004	16.0000		24.5666	
Trichloroethene	ug/l	MW-7	04/21/2004	28.0000	*	24.5666	
Trichloroethene	ug/l	MW-9	04/21/2004	623.3333	*	24.5666	

^{* -} Current value failed.

***** - Insufficient background data to compute prediction limit.

ND = Not Detected, result = detection limit.

Table 3

Detection Frequencies in Background and Onsite/Downgradient Locations

Constituent	Detect	Backgrd N	Proportion	Detect	Onsite N	Proportion
Benzene	0	35	0.000	49	335	0.146
Cadmium	2	35	0.057	50	338	0.148
Chromium	2	34	0.059	108	334	0.323
Chromium (vi)	2	35	0.057	124	338	0.367
Copper	6	35	0.171	73	338	0.216
Ethylbenzene	7	35	0.200	200	338	0.592
Toluene	0	34	0.000	56	328	0.171
Total xylenes	7	35	0.200	146	338	0.432
Trichloroethene	35	35	1.000	337	338	0.997

N = Total number of measurements in all locations. Detect = Total number of detections in all locations. Proportion = Detect/N.

Table 4
Shapiro Wilk Test of Normality for Multiple Groups

Constituent	N (Detects)	Detect Freq	G raw	G log	Critical Value	Limit Type
Benzene	0	0.000				nonpar
Cadmium	2	0.057				nonpar
Chromium	2	0.059		į į		nonpar
Chromium (vi)	2	0.057				nonpar
Copper	6	0.171	3.043	3.023	2.326	nonpar
Ethylbenzene	7	0.200	0.825	0.028	2.326	nonpar
Toluene	0	0.000				nonpar
Total xylenes	7	0.200	0.454	0.017	2.326	nonpar
Trichloroethene	35	1.000	0.904	1.884	2.326	normal

Fit to distribution is confirmed if G < critical value. If detection frequency is < 50% nonparametric or Poisson limit is used

Table 5 **Summary Statistics and 95% Confidence Prediction Limits**

Constituent	Units	Model Type	N	Detect	Mean	SD	Pred Limit	Conf*
Benzene	ug/i	nonpar	35	0			0.5000	0.69
Cadmium	mg/L	nonpar	35	2			0.0100	0.69
Chromium	mg/L	nonpar	34	2			0.0100	0.69
Chromium (vi)	mg/L	nonpar	35	2			0.0200	0.69
Copper	mg/L	nonpar	35	6			0.0500	0.69
Ethylbenzene	ug/l	nonpar	35	7			3.4000	0.69
Toluene	ug/l	nonpar	34	0			1.0000	0.69
Total xylenes	ug/l	nonpar	35	7			5.8000	0.69
Trichloroethene	ug/l	normal	35	35	10.0971	3.9028	24.5666	

^{* -} Confidence level for passing a single test at all onsite/downgradient locations for a single constituent (nonparametric test only).

Model Type refers to type of prediction limit.

For lognormal limit, mean and sd in natural log units and prediction limit in original units.

All sample sizes and statistics are based on outlier free data.

For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Benzene	ug/l	MW-14S	07/01/1994	ND	0.5000		0.5000
Benzene	ug/l	MW-14S	10/01/1994		0.5300	*	0.5000
Benzene	ug/l	MW-14S	04/01/1995	ND	5.0000		0.5000
Benzene	ug/l	MW-14S	01/01/1996	ND	1.0000		0.5000
Benzene	ug/l	MW-14S	04/01/1996	ND	2.5000		0.5000
Benzene	ug/l	MW-14S	07/01/1996		0.5800	*	0.5000
Benzene	ug/l	MW-14S	10/01/1996	ND	0.5000		0.5000
Benzene	ug/l	MW-14S	01/01/1997	ND	2.5000		0.5000
Benzene	ug/l	MW-14S	04/01/1997		0.5800	*	0.5000
Benzene	ug/l	MW-14S	07/01/1997	ND	0.5000		0.5000
Benzene	ug/l	MW-14S	10/01/1997	ND	0.5000		0.500
Benzene	ug/l	MW-14S	01/01/1998	ND	0.5000		0.500
Benzene	ug/i	MW-14S	04/01/1998	ND	12.0000		0.500
Benzene	ug/l	MW-14S	07/01/1998	,,,,	0.5100	*	0.500
Benzene	ug/l	MW-14S	10/01/1998	ND	1.2000		0.500
Benzene	ug/l	MW-14S	01/01/1999		1.1000	*	0.5000
Benzene	ug/l	MW-14S	04/01/1999	ND	12.0000		0.500
Benzene	ug/l	MW-14S	07/01/1999	ND	50.0000		0.500
Benzene	ug/l	MW-14S	10/01/1999	ND	5.0000		0.500
Benzene	ug/i	MW-14S	01/01/2000	ND	5.0000		0.500
Benzene	ug/i	MW-14S	04/01/2000	.,,	3.2000	*	0.500
	ug/l	MW-14S	10/01/2000	ND	5.0000		0.500
Benzene	ug/l	MW-14S	04/01/2001	N	2.1000	*	0.500
Benzene	ug/l	MW-14S	07/01/2001	ND	1.0000		0.500
Benzene	ug/l	MW-14S	10/01/2001	ND	2.0000		0.500
Benzene	ug/l	MW-14S	01/01/2002	ND	50.0000		0.500
Benzene	ug/l	MW-14S	04/01/2002	ND	2.0000		0.500
Benzene	ug/i ug/i	MW-14S	07/01/2002	ND	25.0000		0.500
Benzene		MW-14S	10/23/2002	ND	5.0000		0.500
Benzene	ug/i	MW-14S	04/24/2003	IND	2.6000	*	0.500
Benzene	ug/i	MW-14S	07/30/2003		1.4000	*	0.500
Benzene	ug/l	MW-14S	01/22/2004	ND	2.0000		0.500
Benzene	ug/l		04/21/2004	ND	2.2000		0.500
Benzene	ug/l	MW-14S MW-1D	10/22/2002	ND	1.0000		0.500
Benzene	ug/l			ND			0.500
Benzene	ug/l	MW-1D	01/08/2003	ND	0.6700		0.500
Benzene	ug/l	MW-1D	04/23/2003	ND	0.5000 0.9800	*	0.500
Benzene	ug/l	MW-1D	07/30/2003			*	0.500
Benzene	ug/l	MW-1D	01/21/2004		4.0000	*	0.500
Benzene	ug/l	MW-1D	04/20/2004	NID	0.5800		0.500
Benzene	ug/l	MW-3	07/01/1994	ND	0.5000	*	0.500
Benzene	ug/l	MW-3	10/01/1994	ND	1.2000		0.500
Benzene	ug/l	MW-3	01/01/1995		0.5000		
Benzene	ug/l	MW-3	04/01/1995	ND	0.5000		0.500
Benzene	ug/l	MW-3	01/01/1996	ND	0.5000		0.500
Benzene	ug/l	MW-3	04/01/1996	ND	0.5000		0.500
Benzene	ug/l	MW-3	07/01/1996	ND	0.5000		0.500
Benzene	ug/l	MW-3	10/01/1996	ND	0.5000		0.500
Benzene	ug/l	MW-3	01/01/1997	ND	0.5000		0.500
Benzene	ug/l	MW-3	04/01/1997	ND	0.5000		0.500
Benzene	ug/l	MW-3	07/01/1997	ND	0.5000		0.500
Benzene	ug/l	MW-3	10/01/1997		0.5700	*	0.500
Benzene	ug/l	MW-3	01/01/1998	ND	0.5000		0.500

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Benzene	ug/l	MW-3	04/01/1998	ND	0.5000		0.5000
Benzene	ug/l	MW-3	07/01/1998	ND	0.5000		0.5000
Benzene	ug/l	MW-3	10/01/1998	ND	0.5000		0.5000
Benzene	ug/i	MW-3	01/01/1999	ND	0.5000		0.5000
Benzene	ug/l	MW-3	04/01/1999	ND	1.0000		0.5000
Benzene	ug/l	MW-3	07/01/1999	ND	1.0000		0.5000
Benzene	ug/l	MW-3	10/01/1999	ND	5.0000		0.5000
Benzene	ug/l	MW-3	01/01/2000	ND	2.5000		0.5000
Benzene	ug/l	MW-3	04/01/2000	ND	2.5000		0.5000
Benzene	ug/l	MW-3	10/01/2000	ND	2.5000		0.5000
Benzene	ug/l	MW-3	04/01/2001	ND	2.0000		0.5000
Benzene	ug/l	MW-3	07/01/2001	ND	1.0000		0.5000
Benzene	ug/l	MW-3	10/01/2001	ND	5.0000		0.5000
Benzene	ug/l	MW-3	01/01/2002	ND	2.5000		0.5000
Benzene	ug/l	MW-3	04/01/2002	ND	5.0000		0.5000
Benzene	ug/l	MW-3	07/01/2002	ND	5.0000		0.5000
Benzene	ug/l	MW-3	10/22/2002	ND	10.0000		0.5000
Benzene	ug/l	MW-3	01/08/2003		1.6000	*	0.5000
Benzene	ug/l	MW-3	04/23/2003	ND	1.0000		0.5000
Benzene	ug/l	MW-3	07/29/2003	ND	2.5000		0.5000
Benzene	ug/l	MW-3	01/21/2004		1.8000	*	0.5000
Benzene	ug/l	MW-3	04/20/2004		1.2000	*	0.5000
Benzene	ug/l	MW-4	07/01/1994		0.5800	*	0.5000
Benzene	ug/l	MW-4	10/01/1994	ND	5.0000		0.5000
Benzene	ug/l	MW-4	01/01/1995	ND	5.0000		0.5000
Benzene	ug/l	MW-4	04/01/1995	ND	100.0000		0.5000
Benzene	ug/l	MW-4	01/01/1996	ND	50.0000		0.5000
Benzene	ug/l	MW-4	04/01/1996	ND	25.0000		0.5000
Benzene	ug/l	MW-4	07/01/1996	ND	50.0000		0.5000
Benzene	ug/l	MW-4	10/01/1996	ND	0.5000		0.5000
Benzene	ug/l	MW-4	01/01/1997	ND	6.2000		0.5000
Benzene	ug/l	MW-4	04/01/1997	ND	12.0000		0.5000
Benzene	ug/l	MW-4	07/01/1997	ND	5.0000		0.5000
Benzene	ug/l	MW-4	10/01/1997	ND	5.0000		0.5000
Benzene	ug/l	MW-4	01/01/1998	ND	5.0000		0.5000
Benzene	ug/l	MW-4	04/01/1998		2.9000	*	0.5000
Benzene	ug/l	MW-4	07/01/1998	ND	12.0000		0.5000
Benzene	ug/l	MW-4	10/01/1998	ND	6.2000		0.5000
Benzene	ug/l	MW-4	01/01/1999	ND	5.0000		0.5000
Benzene	ug/l	MW-4	04/01/1999		3.5000	*	0.5000
Benzene	ug/l	MW-4	07/01/1999	ND	10.0000		0.5000
Benzene	ug/l	MW-4	10/01/1999	ND	5.0000		0.5000
Benzene	ug/l	MW-4	01/01/2000		5.1000	*	0.5000
Benzene	ug/l	MW-4	04/01/2000	ND	5.0000		0.5000
Benzene	ug/l	MW-4	10/01/2000	ND	50.0000		0.5000
Benzene	ug/l	MW-4	04/01/2001	ND	50.0000		0.5000
Benzene	ug/l	MW-4	07/01/2001	ND	50.0000		0.5000
Benzene	ug/l	MW-4	10/01/2001	ND	50.0000		0.5000
Benzene	ug/l	MW-4	01/01/2002	ND	10.0000		0.5000
Benzene	ug/l	MW-4	04/01/2002	ND	50.0000		0.5000
Benzene	ug/l	MW-4	07/01/2002	110	7.6500	*	0.5000
Benzene	ug/l	MVV-4	10/23/2002	ND	12.0000		0.5000
201120110	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,41.0.	IOILOILOOL		12.0000		0.0000

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Benzene	ug/l	MW-4	12/30/2002		3.8000	*	0.500
Benzene	ug/l	MW-4	04/25/2003		3.7333	*	0.500
Benzene	ug/l	MW-4	07/30/2003		630.9333	*	0.500
Benzene	ug/l	MW-4	01/23/2004		337.3333	*	0.500
Benzene	ug/l	MW-4	04/21/2004		2.2000	*	0.500
Cadmium	mg/L	MW-4	07/01/1994		0.2000	*	0.010
Cadmium	mg/L	MW-4	10/01/1994		0.4500	*	0.010
Cadmium	mg/L	MW-4	01/01/1995		0.1300	*	0.010
Cadmium	mg/L	MW-4	04/01/1995		0.2100	*	0.010
Cadmium	mg/L	MW-4	01/01/1996		0.1900	*	0.010
Cadmium	mg/L	MW-4	04/01/1996		0.6000	*	0.010
Cadmium	mg/L	MW-4	07/01/1996		0.2800	*	0.010
Cadmium	mg/L	MW-4	10/01/1996		0.4600	*	0.010
Cadmium	mg/L	MW-4	01/01/1997	Ì	0.5400	*	0.010
Cadmium	mg/L	MW-4	04/01/1997		0.5300	*	0.010
Cadmium	mg/L	MW-4	07/01/1997		0.6200	*	0.010
Cadmium	mg/L	MW-4	10/01/1997		0.6400	*	0.010
Cadmium	mg/L	MW-4	01/01/1998		0.5300	*	0.010
Cadmium	mg/L	MW-4	04/01/1998		0.4300	*	0.010
Cadmium	mg/L	MW-4	07/01/1998		0.3200	*	0.010
Cadmium	mg/L	MW-4	10/01/1998		0.4400	*	0.010
	mg/L	MW-4	01/01/1999		0.5800	*	0.010
Cadmium		MW-4	04/01/1999		0.4100	*	0.010
Cadmium	mg/L	MW-4	07/01/1999		0.4200	*	0.010
Cadmium	mg/L	MW-4	10/01/1999		0.5900	*	0.010
Cadmium	mg/L	MW-4	01/01/2000		0.3200	*	0.010
Cadmium	mg/L	MW-4	04/01/2000		0.5500	*	0.010
Cadmium	mg/L				0.5200	*	0.010
Cadmium	mg/L	MW-4	10/01/2000 04/01/2001		0.3200	*	0.010
Cadmium	mg/L	MW-4 MW-4	07/01/2001		0.3000	*	0.010
Cadmium	mg/L	1			0.3100	*	0.010
Cadmium	mg/L	MW-4	10/01/2001			*	
Cadmium	mg/L	MW-4	01/01/2002		0.3800	*	0.010
Cadmium	mg/L	MW-4	04/01/2002		0.4350		0.010
Cadmium	mg/L	MW-4	07/01/2002		0.4900	*	0.010
Cadmium	mg/L	MW-4	10/23/2002		0.6150	*	0.010
Cadmium	mg/L	MW-4	12/30/2002		0.2550	*	0.010
Cadmium	mg/L	MW-4	04/25/2003		0.1933	*	0.010
Cadmium	mg/L	MW-4	07/30/2003		453.6267	*	0.010
Cadmium	mg/L	MW-4	01/23/2004		563.5300	*	0.010
Cadmium	mg/L	MW-4	04/21/2004		530.2100		0.010
Chromium	mg/L	MW-14S	07/01/1994		0.0100		0.010
Chromium	mg/L	MW-14S	10/01/1994	ND	0.0600		0.010
Chromium	mg/L	MW-14S	04/01/1995	ND	0.0100		0.010
Chromium	mg/L	MW-14S	01/01/1996		0.0300	*	0.010
Chromium	mg/L	MW-14S	04/01/1996		0.0200	*	0.010
Chromium	mg/L	MW-14S	07/01/1996		0.0600	*	0.010
Chromium	mg/L	MW-14S	10/01/1996		0.0800	*	0.010
Chromium	mg/L	MW-14S	01/01/1997		0.0300	*	0.010
Chromium	mg/L	MW-14S	04/01/1997		0.0300	*	0.010
Chromium	mg/L	MW-14S	07/01/1997		0.0100		0.010
Chromium	mg/L	MW-14S	10/01/1997		0.0100		0.010
Chromium	mg/L	MW-14S	01/01/1998		0.0100		0.010

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Chromium	mg/L	MW-14S	04/01/1998		0.0100		0.0100
Chromium	mg/L	MW-14S	07/01/1998	ND	0.0100		0.0100
Chromium	mg/L	MW-14S	10/01/1998		0.0400	*	0.0100
Chromium	mg/L	MW-14S	01/01/1999		0.0300	*	0.0100
Chromium	mg/L	MW-14S	04/01/1999	ND	0.0100		0.0100
Chromium	mg/L	MW-14S	07/01/1999	ND	0.0100		0.0100
Chromium	mg/L	MW-14S	10/01/1999		0.1500	*	0.0100
Chromium	mg/L	MW-14S	01/01/2000		0.2600	*	0.0100
Chromium	mg/L	MW-14S	04/01/2000	ND	0.0100		0.0100
Chromium	mg/L	MW-14S	10/01/2000		0.0900	*	0.0100
Chromium	mg/L	MW-14S	04/01/2001		0.0400	*	0.0100
Chromium	mg/L	MW-14S	07/01/2001		0.0200	*	0.0100
Chromium	mg/L	MW-14S	10/01/2001		0.1400	*	0.0100
Chromium	mg/L	MW-14S	01/01/2002	ND	0.0100		0.0100
Chromium	mg/L	MW-14S	04/01/2002		0.0400	*	0.0100
Chromium	mg/L	MW-14S	07/01/2002		0.0600	.*	0.0100
Chromium	mg/L	MW-14S	10/23/2002		0.4200	*	0.0100
Chromium	mg/L	MW-14S	12/30/2002		0.0100		0.0100
Chromium	mg/L	MW-14S	04/24/2003		0.0200	*	0.0100
Chromium	mg/L	MW-14S	07/30/2003	1	0.1500	*	0.0100
Chromium	mg/L	MW-14S	01/22/2004		0.9500	*	0.0100
Chromium	mg/L	MW-14S	04/21/2004		0.3100	*	0.0100
Chromium	mg/L	MW-4	07/01/1994		41.4000	*	0.0100
Chromium	mg/L	MW-4	10/01/1994	ND	52.8000		0.0100
Chromium	mg/L	MW-4	01/01/1995		34.3000	*	0.0100
Chromium	mg/L	MW-4	04/01/1995	ł	9.1000	*	0.0100
Chromium	mg/L	MW-4	01/01/1996		32.4000	*	0.0100
Chromium	mg/L	MW-4	04/01/1996		38.0000	*	0.0100
Chromium	mg/L	MW-4	07/01/1996		58.9000	*	0.0100
Chromium	mg/L	MW-4	10/01/1996		75.7000	*	0.0100
Chromium	mg/L	MW-4	01/01/1997		34.5000	*	0.0100
Chromium	mg/L	MW-4	04/01/1997		18.8000	*	0.0100
Chromium	mg/L	MW-4	07/01/1997		35.2000	*	0.0100
Chromium	mg/L	MW-4	10/01/1997		85.3000	*	0.0100
Chromium	mg/L	MW-4	01/01/1998		44.0000	*	0.0100
Chromium	mg/L	MW-4	04/01/1998		14.1000	*	0.0100
Chromium	mg/L	MW-4	07/01/1998		18.9000	*	0.0100
Chromium	mg/L	MW-4	10/01/1998		36.2000	*	0.0100
Chromium	mg/L	MW-4	01/01/1999		85.2000	*	0.0100
Chromium	mg/L	MW-4	04/01/1999		42.8000	*	0.0100
Chromium	mg/L	MW-4	07/01/1999		49.7000	*	0.0100
Chromium	mg/L	MW-4	10/01/1999		105.0000	*	0.0100
Chromium	mg/L	MW-4	01/01/2000		60.0000	*	0.0100
Chromium	mg/L	MW-4	04/01/2000		39.3000	*	0.0100
Chromium	mg/L	MW-4	10/01/2000		42.1000	*	0.0100
Chromium	mg/L	MW-4	04/01/2001		16.8000	*	0.0100
Chromium	mg/L	MW-4	07/01/2001		24.5000	*	0.0100
Chromium	mg/L	MW-4	10/01/2001		34.3500	*	_
Chromium	mg/L	MW-4	01/01/2001			*	0.0100
Chromium		MW-4			21.6500	*	0.0100
	mg/L		04/01/2002		26.8500	*	0.0100
Chromium	mg/L	MW-4	07/01/2002		31.2500	*	0.0100
Chromium	mg/L	MW-4	10/23/2002		29.8000	_	0.0100

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Chromium	mg/L	MW-4	12/30/2002		9.3000	*	0.0100
Chromium	mg/L	MW-4	04/25/2003		10.6667	*	0.0100
Chromium	mg/L	MW-4	07/30/2003		715.6667	*	0.0100
Chromium	mg/L	MW-4	01/23/2004		1066.0000	*	0.0100
Chromium	mg/L	MW-4	04/21/2004		481.0000	*	0.0100
Chromium	mg/L	MW-9	07/01/1994	ND	0.0100		0.0100
Chromium	mg/L	MW-9	10/01/1994	ND	0.0100		0.0100
Chromium	mg/L	MW-9	01/01/1995	ND	0.0100		0.0100
Chromium	mg/L	MW-9	04/01/1995	ND	0.0100		0.0100
Chromium	mg/L	MW-9	01/01/1996	ND	0.0100		0.0100
Chromium	mg/L	MW-9	04/01/1996	ND	0.0100		0.0100
Chromium	mg/L	MW-9	07/01/1996	ND	0.0100		0.0100
Chromium	mg/L	MW-9	10/01/1996	ND	0.0100		0.0100
Chromium	mg/L	MW-9	01/01/1997	ND	0.0100		0.0100
Chromium	mg/L	MW-9	04/01/1997	ND	0.0100		0.0100
Chromium	mg/L	MW-9	07/01/1997	ND	0.0100		0.0100
Chromium	mg/L	MW-9	10/01/1997	IND	0.0400	*	0.0100
		MW-9	01/01/1998	ND	0.0400		0.010
Chromium	mg/L						
Chromium	mg/L	MW-9	04/01/1998	ND	0.0100		0.0100
Chromium	mg/L	MW-9	07/01/1998	ND	0.0100	_	0.0100
Chromium	mg/L	MW-9	10/01/1998		1.3000	-	0.0100
Chromium	mg/L	MW-9	01/01/1999	ND	0.0100		0.0100
Chromium	mg/L	MW-9	04/01/1999		0.6400		0.0100
Chromium	mg/L	MW-9	07/01/1999		0.6400	*	0.0100
Chromium	mg/L	MW-9	10/01/1999		4.2000	*	0.0100
Chromium	mg/L	MW-9	01/01/2000		13.9000	*	0.0100
Chromium	mg/L	MW-9	04/01/2000	ND	0.0100		0.0100
Chromium	mg/L	MW-9	10/01/2000		0.0100		0.0100
Chromium	mg/L	MW-9	04/01/2001		0.0100		0.0100
Chromium	mg/L	MW-9	07/01/2001		0.0800	*	0.0100
Chromium	mg/L	MW-9	10/01/2001		1.3500	*	0.0100
Chromium	mg/L	MW-9	01/01/2002		0.1550	*	0.0100
Chromium	mg/L	MW-9	04/01/2002		0.1550	*	0.0100
Chromium	mg/L	MW-9	07/01/2002		9.2000	*	0.0100
Chromium	mg/L	MW-9	10/24/2002		4.6500	*	0.0100
Chromium	mg/L	MW-9	01/09/2003		9.6500	*	0.0100
Chromium	mg/L	MW-9	04/25/2003		120.1833	*	0.0100
Chromium	mg/L	MW-9	07/31/2003		1.4667	*	0.010
Chromium	mg/L	MW-9	01/23/2004		1.6000	*	0.0100
Chromium	mg/L	MW-9	04/21/2004		855.9333	*	0.0100
Chromium (vi)	mg/L	MW-14S	07/01/1994	ND	0.0200		0.0200
	mg/L	MW-14S	10/01/1994	NU	0.0200	*	0.0200
Chromium (vi)		MW-14S		ND	0.0300		0.0200
Chromium (vi)	mg/L		04/01/1995				
Chromium (vi)	mg/L	MW-14S	01/01/1996	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-14S	04/01/1996	,,_	0.0200		0.0200
Chromium (vi)	mg/L	MW-14S	07/01/1996	ND	0.0100		0.0200
Chromium (vi)	mg/L	MW-14S	10/01/1996		0.0500	*	0.0200
Chromium (vi)	mg/L	MW-14S	01/01/1997		0.0200		0.0200
Chromium (vi)	mg/L	MW-14S	04/01/1997	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-14S	07/01/1997	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-14S	10/01/1997	ND	0.1000		0.0200
Chromium (vi)	mg/L	MW-14S	01/01/1998	ND	0.0200		0.0200

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Chromium (vi)	mg/L	MW-14S	04/01/1998	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-14S	07/01/1998	ND			
		MW-14S	10/01/1998	NU	0.0200	*	0.0200
Chromium (vi)	mg/L				0.0300	*	0.0200
Chromium (vi)	mg/L	MW-14S	01/01/1999	ND.	0.0500	_	0.0200
Chromium (vi)	mg/L	MW-14S	04/01/1999	ND	0.0100		0.0200
Chromium (vi)	mg/L	MW-14S	07/01/1999	ND	0.0200	.	0.0200
Chromium (vi)	mg/L	MW-14S	10/01/1999		0.0300		0.0200
Chromium (vi)	mg/L	MW-14S	01/01/2000		0.1100	ı -	0.0200
Chromium (vi)	mg/L	MW-14S	04/01/2000	ND	0.0100		0.0200
Chromium (vi)	mg/L	MW-14S	10/01/2000		0.0300	*	0.0200
Chromium (vi)	mg/L	MW-14S	04/01/2001		0.0500	*	0.0200
Chromium (vi)	mg/L	MW-14S	07/01/2001		0.0046		0.0200
Chromium (vi)	mg/L	MW-14S	10/01/2001	ND	0.0020		0.0200
Chromium (vi)	mg/L	MW-14S	01/01/2002	ND	0.0060		0.0200
Chromium (vi)	mg/L	MW-14S	04/01/2002		0.0300	*	0.0200
Chromium (vi)	mg/L	MW-14S	07/01/2002		0.0100		0.0200
Chromium (vi)	mg/L	MW-14S	10/23/2002		0.4200	*	0.0200
Chromium (vi)	mg/L	MW-14S	12/30/2002		0.0042		0.0200
Chromium (vi)	mg/L	MW-14S	04/24/2003	ND	0.0010		0.0200
Chromium (vi)	mg/L	MW-14S	07/30/2003		0.1200	*	0.0200
Chromium (vi)	mg/L	MW-14S	01/22/2004		0.4400	*	0.0200
Chromium (vi)	mg/L	MW-14S	04/21/2004		0.3300	*	0.0200
Chromium (vi)	mg/L	MW-4	07/01/1994		59.0000	*	0.0200
Chromium (vi)	mg/L	MW-4	10/01/1994		60.7000	*	0.0200
Chromium (vi)	mg/L	MW-4	01/01/1995		28.8000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/01/1995		8.6000	*	0.0200
Chromium (vi)	mg/L	MW-4	01/01/1996		25.7000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/01/1996		28.4000	*	0.0200
Chromium (vi)	mg/L	MW-4	07/01/1996		50.0000	*	0.0200
Chromium (vi)	mg/L	MW-4	10/01/1996		63.8000	*	0.0200
Chromium (vi)	mg/L	MW-4	01/01/1997		45.9000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/01/1997		27.3000	*	0.0200
Chromium (vi)	mg/L	MW-4	07/01/1997		36.0000	*	0.0200
Chromium (vi)	mg/L	MW-4	10/01/1997		73.8000	*	0.0200
Chromium (vi)	mg/L	MW-4	01/01/1998		39.2000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/01/1998		7.2000	*	0.0200
Chromium (vi)	mg/L	MW-4	07/01/1998		16.3000	*	0.0200
Chromium (vi)	mg/L	MW-4	10/01/1998		34.1000	*	0.0200
Chromium (vi)	mg/L	MW-4	01/01/1999		78.6000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/01/1999		0.5700	*	0.0200
Chromium (vi)	mg/L	MW-4	07/01/1999		41.1000	*	0.0200
Chromium (vi)	mg/L	MW-4	10/01/1999		58.2000	*	0.0200
Chromium (vi)	mg/L	MW-4	01/01/2000		76.3000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/01/2000		32.9000	*	0.0200
Chromium (vi)	mg/L	MW-4	10/01/2000		45.6000	*	0.0200
Chromium (ví)	mg/L	MW-4	04/01/2001		11.0000	*	0.0200
Chromium (vi)	mg/L	MW-4	07/01/2001		14.5000	*	0.0200
Chromium (vi)	mg/L	MW-4	10/01/2001		32.5000	*	0.0200
Chromium (vi)	mg/L	MW-4	01/01/2002		18.0000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/01/2002		31.0000		0.0200
Chromium (vi)	mg/L	MW-4	07/01/2002		27.8000		0.0200
Chromium (vi)	mg/L	MW-4	10/23/2002		31.4500	*	0.0200
Othornion (vi)	,,,,g,,		10/20/2002		31.4300		0.0200

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Chromium (vi)	mg/L	MW-4	12/30/2002		10.2000	*	0.0200
Chromium (vi)	mg/L	MW-4	04/25/2003		1178.0000	*	0.0200
Chromium (vi)	mg/L	MW-4	07/30/2003		450.6667	*	0.0200
Chromium (vi)	mg/L	MW-4	01/23/2004		135.6667	*	0.0200
Chromium (vi)	mg/L	MW-4	04/21/2004		530.6667	*	0.0200
Chromium (vi)	mg/L	MW-9	07/01/1994	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	10/01/1994	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	01/01/1995	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	04/01/1995	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	01/01/1996	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	04/01/1996	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	07/01/1996	ND	0.0100		0.0200
Chromium (vi)	mg/L	MW-9	10/01/1996	ND	0.0100		0.0200
Chromium (vi)	mg/L	MW-9	01/01/1997	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	04/01/1997	ND	0.0200	ĺ	0.0200
Chromium (vi)	mg/L	MW-9	07/01/1997	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	10/01/1997	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	01/01/1998	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	04/01/1998	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	07/01/1998	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	10/01/1998	.,_	3.3000	*	0.0200
Chromium (vi)	mg/L	MW-9	01/01/1999		3.3000	*	0.0200
Chromium (vi)	mg/L	MW-9	04/01/1999	ND	0.0100		0.0200
Chromium (vi)	mg/L	MW-9	07/01/1999	.,,,	5.8000	*	0.0200
Chromium (vi)	mg/L	MW-9	10/01/1999		4.0000	*	0.0200
Chromium (vi)	mg/L	MW-9	01/01/2000		14.1000	*	0.0200
Chromium (vi)	mg/L	MW-9	04/01/2000	ND	0.0100		0.0200
Chromium (vi)	mg/L	MW-9	10/01/2000	ND	0.0200		0.0200
Chromium (vi)	mg/L	MW-9	04/01/2001	,,,,	0.0043		0.0200
Chromium (vi)	mg/L	MW-9	07/01/2001		0.0800	*	0.0200
Chromium (vi)	mg/L	MW-9	10/01/2001		1.1000	*	0.0200
Chromium (vi)	mg/L	MW-9	01/01/2002		0.2550	*	0.0200
Chromium (vi)	mg/L	MW-9	04/01/2002		0.1400	*	0.0200
	mg/L	MW-9	07/01/2002		10.1000	*	0.0200
Chromium (vi)		MW-9	10/24/2002		4.3500	*	0.0200
Chromium (vi)	mg/L	MW-9	01/09/2003		9.5000	*	0.0200
Chromium (vi)	mg/L	MW-9	04/25/2003		130.1700	*	0.0200
Chromium (vi)	mg/L	1			158.1000	*	0.0200
Chromium (vi)	mg/L	MW-9	07/31/2003			*	0.0200
Chromium (vi)	mg/L	MW-9	01/23/2004		121.8333 1145.6670	*	0.0200
Chromium (vi)	mg/L	MW-9	04/21/2004	ND			3.4000
Ethylbenzene	ug/l	MW-11	07/01/1994	ND	1.0000 4.5000	*	3.4000
Ethylbenzene	ug/l	MW-11	10/01/1994		850.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	01/01/1995			*	3.4000
Ethylbenzene	ug/l	MW-11	04/01/1995		1900.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	01/01/1996		460.0000	*	
Ethylbenzene	ug/l	MW-11	04/01/1996		1100.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	07/01/1996		460.0000		3.4000
Ethylbenzene	ug/l	MW-11	10/01/1996		20.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	01/01/1997		84.0000	1	3.4000
Ethylbenzene	ug/l	MW-11	04/01/1997		120.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	07/01/1997		8.3000	*	3.4000
Ethylbenzene	ug/l	MW-11	10/01/1997	ND	5.0000		3.4000

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Ethylbenzene	ug/l	MW-11	01/01/1998		1800.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	04/01/1998		150.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	07/01/1998		41.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	10/01/1998	ND	10.0000		3.4000
Ethylbenzene	ug/l	MW-11	01/01/1999		750.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	04/01/1999		1600.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	07/01/1999		85.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	10/01/1999		480.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	01/01/2000	ND	12.0000		3.4000
Ethylbenzene	ug/l	MW-11	04/01/2000		55.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	10/01/2000	ND	50.0000		3.4000
Ethylbenzene	ug/l	MW-11	04/01/2001		48.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	07/01/2001	ND	5.0000		3.4000
Ethylbenzene	ug/l	MW-11	10/01/2001		90.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	01/01/2002		1900.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	04/01/2002		300.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	07/01/2002	ND	50.0000		3.4000
Ethylbenzene	ug/l	MW-11	10/24/2002		390.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	12/30/2002		31.0000	*	3.4000
Ethylbenzene	ug/i	MW-11	04/25/2003	ND	5.0000		3,4000
Ethylbenzene	ug/l	MW-11	07/31/2003		210.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	01/23/2004		24.0000	*	3.4000
Ethylbenzene	ug/l	MW-11	04/21/2004		3.6000	*	3.4000
Trichloroethene	ug/l	MW-11	07/01/1994		180.0000	*	24.5666
Trichloroethene	ug/l	MW-11	10/01/1994		360.0000	*	24.5666
Trichloroethene	ug/l	MW-11	01/01/1995		660,0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/01/1995		74.0000	*	24.5666
Trichloroethene	ug/l	MW-11	01/01/1996		620.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/01/1996		240.0000	*	24.5666
Trichloroethene	ug/l	MW-11	07/01/1996		220.0000	*	24.5666
Trichloroethene	ug/l	MW-11	10/01/1996		250.0000	*	24.5666
Trichloroethene	ug/l	MW-11	01/01/1997		160.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/01/1997		370.0000	*	24.5666
Trichloroethene	ug/l	MW-11	07/01/1997		240.0000	*	24.5666
Trichloroethene	ug/l	MW-11	10/01/1997		350.0000	*	24.5666
Trichloroethene	ug/l	MW-11	01/01/1998		390.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/01/1998		180.0000	*	24.5666
Trichloroethene	ug/l	MW-11	07/01/1998		150.0000	*	24.5666
Trichloroethene	ug/i	MW-11	10/01/1998		430.0000	*	24.5666
Trichloroethene	ug/l	MW-11	01/01/1999	İ	690.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/01/1999		480.0000	*	24.5666
Trichloroethene	ug/l	MW-11	07/01/1999		740.0000	*	24.5666
Trichloroethene	ug/l	MW-11	10/01/1999	1	650.0000	*	24.5666
Trichloroethene	ug/l	MW-11	01/01/2000		820.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/01/2000		1100.0000	*	24.5666
Trichloroethene	ug/l	MW-11	10/01/2000		2900.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/01/2001		1700.0000	*	24.5666
Trichloroethene	ug/l	MW-11	07/01/2001		400.0000	*	24.5666
Trichloroethene	ug/l	MW-11	10/01/2001		1500.0000	*	24.5666
Trichloroethene	ug/i	MW-11	01/01/2001			*	
		MW-11			630.0000	*	24.5666
Trichloroethene	ug/l	1	04/01/2002		1300.0000	*	24.5666
Trichloroethene	ug/l	MW-11	07/01/2002		1500.0000	<u> </u>	24.5666

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date	Result		Pred. Limit
Trichloroethene	ug/l	MW-11	10/24/2002	700.0000	*	24.5666
Trichloroethene	ug/l	MW-11	12/30/2002	550.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/25/2003	410.0000	*	24.5666
Trichloroethene	ug/l	MW-11	07/31/2003	1100.0000	*	24.5666
Trichloroethene	ug/l	MW-11	01/23/2004	190.0000	*	24.5666
Trichloroethene	ug/l	MW-11	04/21/2004	250.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	07/01/1994	15.0000		24.5666
Trichloroethene	ug/l	MW-14S	10/01/1994	58.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/01/1995	20.0000		24.5666
Trichloroethene	ug/l	MW-14S	01/01/1996	42.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/01/1996	51.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	07/01/1996	37.0000	*	24,5666
Trichloroethene	ug/l	MW-14S	10/01/1996	61.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	01/01/1997	90.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/01/1997	45.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	07/01/1997	35.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	10/01/1997	57.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	01/01/1998	50.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/01/1998	38.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	07/01/1998	18.0000		24.5666
Trichloroethene	ug/l	MW-14S	10/01/1998	62.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	01/01/1999	98.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/01/1999	84.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	07/01/1999	74.0000	*	24.5666
Trichloroethene	ug/i	MW-14S	10/01/1999	180.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	01/01/2000	230.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/01/2000	60.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	10/01/2000	170.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/01/2001	130.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	07/01/2001	35.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	10/01/2001	170.0000	*	24.5666
	ug/l	MW-14S	01/01/2002	91.0000		24.5666
Trichloroethene Trichloroethene	ug/i	MW-14S	04/01/2002	130.0000		24.5666
	ug/l	MW-14S	07/01/2002	150.0000		24.5666
Trichloroethene	ug/l				.	24.5666
Trichloroethene	ug/l	MW-14S	10/23/2002	360.0000	*	
Trichloroethene	ug/l	MW-14S	12/30/2002	190.0000	*	24.5666
Trichloroethene	ug/l	MW-14S	04/24/2003	160.0000		24.5666
Trichloroethene	ug/l	MW-14S	07/30/2003	200.0000		24.5666
Trichloroethene	ug/l	MW-14S	01/22/2004	480.0000		24.5666
Trichloroethene	ug/l	MW-14S	04/21/2004	570.0000	_	24.5666
Trichloroethene	ug/i	MW-15S	07/01/1994	2.1000		24.5666
Trichloroethene	ug/l	MW-15S	10/01/1994	6.0000		24.5666
Trichloroethene	ug/l	MW-15S	01/01/1995	3.7000		24.5666
Trichloroethene	ug/l	MW-15S	04/01/1995	2.8000		24.5666
Trichloroethene	ug/l	MW-15S	01/01/1996	3.8000		24.5666
Trichloroethene	ug/l	MW-15S	04/01/1996	2.8000		24.5666
Trichloroethene	ug/l	MW-15S	07/01/1996	3.2000		24.5666
Trichloroethene	ug/l	MW-15S	10/01/1996	5.3000		24.5666
Trichloroethene	ug/l	MW-15S	01/01/1997	5.1000		24.5666
Trichloroethene	ug/l	MW-15S	04/01/1997	3.3000		24.5666
Trichloroethene	ug/l	MW-15S	07/01/1997	4.1000		24.5666
Trichloroethene	ug/l	MW-15S	10/01/1997	5.2000		24.5666

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date		Result		Pred. Limit
Trichloroethene	ug/l	MW-15S	01/01/1998		5.0000		24.5666
Trichloroethene	ug/l	MW-15S	04/01/1998		3.1000		24.5666
Trichloroethene	ug/l	MW-15S	07/01/1998		3.4000		24.5666
Trichloroethene	ug/l	MW-15S	10/01/1998		3.9000		24.5666
Trichloroethene	ug/l	MW-15S	01/01/1999		7.0000		24.5666
Trichloroethene	ug/l	MW-15S	04/01/1999		4.2000		24.5666
Trichloroethene	ug/l	MW-15S	07/01/1999		3.9000		24.5666
Trichloroethene	ug/l	MW-15S	10/01/1999		6.7000		24.5666
Trichloroethene	ug/l	MW-15S	01/01/2000		25.0000	*	24.5666
Trichloroethene	ug/l	MW-15S	04/01/2000		17.0000		24.5666
Trichloroethene	ug/l	MW-15S	10/01/2000		6.7000		24.5666
Trichloroethene	ug/l	MW-15S	04/01/2001		3.0000		24.5666
Trichloroethene	ug/l	MW-15S	07/01/2001		5.1000		24.5666
Trichloroethene	ug/l	MW-15S	10/01/2001		2.8000		24.5666
Trichloroethene	ug/l	MW-15S	01/01/2002		2.7000		24.5666
Trichloroethene	ug/l	MW-15S	04/01/2002	i i	2.9000		24.5666
Trichloroethene	ug/l	MW-15S	07/01/2002		4.4000		24.5666
Trichloroethene	ug/l	MW-15S	10/23/2002		13.0000		24.5666
Trichloroethene	ug/l	MW-15S	01/08/2003		22.0000		24.5666
Trichloroethene	ug/l	MW-15S	04/24/2003		3.2000		24.5666
Trichloroethene	ug/l	MW-15S	07/30/2003		5.1000		24.5666
Trichloroethene	ug/i	MW-15S	01/22/2004		85.0000	*	24.5666
Trichloroethene	ug/l	MW-15S	04/21/2004			*	
Trichloroethene	ug/l	MW-3	07/01/1994		73.0000	*	24.5666
Trichloroethene	ug/l	MW-3	10/01/1994		26.0000 76.0000	*	24.5666
Trichloroethene	ug/l	MW-3	01/01/1995		72.0000		24.5666 24.5666
Trichloroethene	ug/l	MW-3	04/01/1995		57.0000	*	
Trichloroethene	ug/l	MW-3	01/01/1996				24.5666
Trichloroethene		MW-3			26.0000		24.5666
Trichloroethene	ug/l	MW-3	04/01/1996		46.0000	-	24.5666
Trichloroethene	ug/l ug/l	MW-3	07/01/1996		17.0000		24.5666
		MW-3	10/01/1996		21.0000	*	24.5666
Trichloroethene Trichloroethene	ug/l	MW-3	01/01/1997		28.0000		24.5666
	ug/l	MW-3	04/01/1997		13.0000		24.5666
Trichloroethene	ug/i	MW-3	07/01/1997		13.0000		24.5666
Trichloroethene Trichloroethene	ug/l	MW-3	10/01/1997		24.0000		24.5666
1	ug/l	MW-3	01/01/1998	i i	25.0000	-	24.5666
Trichloroethene	ug/l		04/01/1998		18.0000	*	24.5666
Trichloroethene	ug/l	MW-3	07/01/1998		25.0000	*	24.5666
Trichloroethene	ug/l	MW-3	10/01/1998		24.0000		24.5666
Trichloroethene	ug/l	MW-3	01/01/1999	l i	26.0000	*	24.5666
Trichloroethene	ug/l	MW-3	04/01/1999		21.0000		24.5666
Trichloroethene	ug/l	MW-3	07/01/1999		43.0000		24.5666
Trichloroethene	ug/l	MW-3	10/01/1999		170.0000	*	24.5666
Trichloroethene	ug/l	MW-3	01/01/2000		170.0000	*	24.5666
Trichloroethene	ug/l	MW-3	04/01/2000		170.0000	*	24.5666
Trichloroethene	ug/l	MW-3	10/01/2000	ND	2.5000		24.5666
Trichloroethene	ug/l	MW-3	04/01/2001		150.0000	*	24.5666
Trichloroethene	ug/l	MW-3	07/01/2001		41.0000	*	24.5666
Trichloroethene	ug/l	MW-3	10/01/2001		290.0000	*	24.5666
Trichloroethene	ug/l	MW-3	01/01/2002		220.0000	*	24.5666
Trichloroethene	ug/l	MW-3	04/01/2002		280.0000	*	24.5666
Trichloroethene	ug/l	MW-3	07/01/2002		260.0000	*	24.5666

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date	Result		Pred. Limit
Trichloroethene	ug/l	MW-3	10/22/2002	190.0000	*	24.5666
Trichloroethene	ug/l	MW-3	01/08/2003	250.0000	*	24.5666
Trichloroethene	ug/l	MW-3	04/23/2003	190.0000	*	24.5666
Trichloroethene	ug/l	MW-3	07/29/2003	280.0000	*	24.5666
Trichloroethene	ug/l	MW-3	01/21/2004	200.0000	*	24.5666
Trichloroethene	ug/l	MW-3	04/20/2004	180.0000	*	24.5666
Trichloroethene	ug/l	MW-4	07/01/1994	340.0000	*	24.5666
Trichloroethene	ug/l	MW-4	10/01/1994	390.0000	*	24.5666
Trichloroethene	ug/l	MW-4	01/01/1995	190.0000	*	24.5666
Trichloroethene	ug/l	MW-4	04/01/1995	67.0000	*	24.5666
Trichloroethene	ug/l	MW-4	01/01/1996	160.0000	*	24.5666
Trichloroethene	ug/l	MW-4	04/01/1996	130.0000	*	24.5666
Trichloroethene	ug/l	MW-4	07/01/1996	140.0000	*	24.5666
Trichloroethene	ug/l	MW-4	10/01/1996	310.0000	*	24.566
Trichloroethene	ug/l	MW-4	01/01/1997	330.0000	*	24.5666
Trichloroethene	ug/l	MW-4	04/01/1997	150.0000	*	24.5666
Trichloroethene	ug/l	MW-4	07/01/1997	/ 150.0000	*	24.566
Trichloroethene	ug/l	MW-4	10/01/1997	230.0000	*	24.566
Trichloroethene	ug/l	MW-4	01/01/1998	180.0000	*	24.566
Trichloroethene	ug/l	MW-4	04/01/1998	92.0000	*	24.566
Trichloroethene	ug/l	MW-4	07/01/1998	120.0000	* -	24.566
Trichloroethene	ug/l	MW-4	10/01/1998	120.0000	*	24.566
Trichloroethene	ug/l	MW-4	01/01/1999	260.0000	*	24.566
Trichloroethene	ug/i	MW-4	04/01/1999	190.0000	*	24.566
Trichloroethene	ug/l	MW-4	07/01/1999	140.0000	*	24.566
Trichloroethene	ug/l	MW-4	10/01/1999	210.0000	*	24.566
Trichloroethene	ug/l	MW-4	01/01/2000	160.0000	*	24.566
Trichloroethene	ug/l	MW-4	04/01/2000	240.0000	*	24.566
Trichloroethene	ug/l	MW-4	10/01/2000	170.0000	*	24.566
Trichloroethene	ug/l	MW-4	04/01/2001	150.0000	*	24.566
Trichloroethene	ug/l	MW-4	07/01/2001	75.0000	*	24.566
Trichloroethene	ug/l	MW-4	10/01/2001	195.0000	*	24.566
Trichloroethene	ug/l	MW-4	01/01/2002	135.0000	*	24.566
Trichloroethene	ug/l	MW-4	04/01/2002	260.0000	*	24.566
Trichloroethene	ug/l	MW-4	07/01/2002	210.0000	*	24.566
Trichloroethene	ug/l	MW-4	10/23/2002	135.0000	*	24.566
Trichloroethene	ug/i	MW-4	12/30/2002	92.0000	*	24.566
	ug/l	MW-4	04/25/2003	336.6667	*	24.566
Trichloroethene	ug/l	MW-4	07/30/2003	326.6667	*	24.566
Trichloroethene		MW-4	01/23/2004	300.0000	*	24.566
Trichloroethene	ug/l ug/l	MW-4	04/21/2004	220.0000	*	24.566
Trichloroethene	ug/I	MW-7	07/01/1994	140.0000	*	24.566
Trichloroethene	ug/l	MW-7	10/01/1994	98.0000	*	24.566
Trichloroethene	ug/l	MW-7	01/01/1994	170.0000	*	24.566
Trichloroethene	ug/l	MW-7	04/01/1995	26.0000	*	24.566
Trichloroethene	ug/l	MW-7		85.0000	*	24.566
Trichloroethene	ug/l		01/01/1996	37.0000	*	24.566
Trichloroethene	ug/l	MW-7	04/01/1996		*	
Trichloroethene	ug/l	MW-7	07/01/1996	87.0000	*	24.566
Trichloroethene	ug/l	MW-7	10/01/1996	150.0000		24.566
Trichloroethene	ug/l	MW-7	01/01/1997	95.0000	*	24.566
Trichloroethene	ug/l	MW-7	04/01/1997	63.0000	-	24.566
Trichloroethene	ug/l	MW-7	07/01/1997	54.0000	*	24.566

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location
Combinations that Failed the Current Statistical Evaluation or
are in Verification Resampling Mode

Constituent	Units	Location	Date	Result		Pred. Limit
Trichloroethene	ug/l	MW-7	10/01/1997	85.0000		24.5666
Trichloroethene	ug/l	MW-7	01/01/1998	97.0000	*	24.5666
Trichloroethene	ug/l	MW-7	04/01/1998	23.0000		24.5666
Trichloroethene	ug/l	MW-7	07/01/1998	53.0000	*	24.5666
Trichloroethene	ug/l	MW-7	10/01/1998	88.0000	*	24.5666
Trichloroethene	ug/l	MW-7	01/01/1999	160.0000	*	24.5666
Trichloroethene	ug/l	MW-7	04/01/1999	80.0000	*	24.5666
Trichloroethene	ug/l	MW-7	07/01/1999	65.0000	*	24.5666
Trichloroethene	ug/l	MW-7	10/01/1999	130.0000	*	24.5666
Trichloroethene	ug/l	MW-7	01/01/2000	47.0000	*	24.5666
Trichloroethene	ug/l	MW-7	04/01/2000	48.0000	*	24.5666
Trichloroethene	ug/l	MW-7	10/01/2000	110.0000	*	24.5666
Trichloroethene	ug/l	MW-7	04/01/2001	78.0000	*	24.5666
Trichloroethene	ug/l	MW-7	07/01/2001	84.0000	*	24.5666
Trichloroethene	ug/l	MW-7	10/01/2001	160.0000	*	24.5666
Trichloroethene	ug/l	MW-7	01/01/2002	15.0000		24.5666
Trichloroethene	ug/l	MW-7	04/01/2002	38.0000	*	24.5666
Trichloroethene	ug/l	MW-7	07/01/2002	100.0000	*	24.5666
Trichloroethene	ug/i	MW-7	10/23/2002	21,0000		24.5666
Trichloroethene	ug/l	MW-7	12/30/2002	13.0000	ĺ	24.5666
Trichloroethene	ug/l	MW-7	04/24/2003	59.0000	*	24.5666
Trichloroethene	ug/l	MW-7	07/30/2003	60.0000	*	24.5666
Trichloroethene	ug/l	MW-7	01/22/2004	32.0000	*	24.5666
Trichloroethene	ug/l	MW-7	04/21/2004	28.0000	*	24.5666
Trichloroethene	ug/l	MW-9	07/01/1994	200.0000	*	24.5666
Trichloroethene	ug/l	MW-9	10/01/1994	350.0000	*	24.5666
Trichloroethene	ug/l	MW-9	01/01/1995	310.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/1995	670.0000	*	24.5666
Trichloroethene	ug/l	MW-9	01/01/1996	500.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/1996	580.0000	*	24.5666
Trichloroethene	ug/l	MW-9	07/01/1996	570.0000	*	24.5666
Trichloroethene	ug/l	MW-9	10/01/1996	470.0000	*	24.5666
Trichloroethene	ug/l	MW-9	01/01/1997	400.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/1997	770.0000	*	24.5666
Trichloroethene	ug/l	MW-9	07/01/1997	850.0000	*	24.5666
Trichloroethene	ug/l	MW-9	10/01/1997	600.0000	*	24.5666
Trichloroethene	ug/l	MW-9	01/01/1998	270.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/1998	390.0000	*	24.5666
Trichloroethene	ug/l	MW-9	07/01/1998	1300.0000	*	24.5666
Trichloroethene	ug/l	MW-9	10/01/1998	1200.0000	*	24.5666
Trichloroethene	ug/l	MW-9	01/01/1999	550.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/1999	350.0000	*	24.5666
Trichloroethene	ug/l	MW-9	07/01/1999	810.0000	*	24.5666
Trichloroethene	ug/l	MW-9	10/01/1999	280.0000	*	24.5666
Trichloroethene	ug/l	MW-9	01/01/2000	170.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/2000	370.0000		24.5666
Trichloroethene	ug/l	MW-9	10/01/2000	160.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/2001	200.0000	*	24.5666
Trichloroethene	ug/l	MW-9	07/01/2001	120.0000	*	24.5666
Trichloroethene	ug/l	MW-9	10/01/2001	390.0000	*	24.5666
Trichloroethene	ug/l	MW-9	01/01/2002	200.0000	*	24.5666
Trichloroethene	ug/l	MW-9	04/01/2002	165.0000	*	24.5666
	-9''		C 170 172002	100,0000		24.0000

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Table 6

Historical Onsite/Downgradient Data for Constituent-Location Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Constituent	Units	Location	Date	Result	Pred. Limit
Trichloroethene	ug/l	MW-9	07/01/2002	525.0000 *	24.5666
Trichloroethene	ug/l	MW-9	10/24/2002	585.0000 *	24.5666
Trichloroethene	ug/l	MW-9	01/09/2003	390.0000 *	24.5666
Trichloroethene	ug/l	MW-9	04/25/2003	300.0000 *	24.5666
Trichloroethene	ug/l	MW-9	07/31/2003	456.6667 *	24.5666
Trichloroethene	ug/l	MW-9	01/23/2004	235.0000 *	24.5666
Trichloroethene	ug/l	MW-9	04/21/2004	623,3333 *	24.5666

^{* -} Significantly increased over background. ND = Not Detected, result = detection limit.

Appendix F-2 Prediction Limit Calculation Sheets

				
-				
**				
¥****				
		·		
~				

-				
النظر				
_				
•				
سنين				
_				
-				
_				

Worksheet 1 - Comparison to Background Benzene (ug/l) Nonparametric Prediction Limit

<u>Step</u>	Equation	Description
1 ,	PL = median(X) = 0.5	Compute nonparametric prediction limit as median reporting limit in background.
2	K = 13	Number of comparisons.
3	N = 35	Number of background measurements.
4	No resampling.	
5	Confidence = 0.693	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Comparison to Background

Cadmium (mg/L)

مثبت	Step	Equation	Description
-	1	PL = max(X) = 0.01	Compute nonparametric prediction limit as largest background measurement.
	2	K = 13	Number of comparisons.
•	3	N = 35	Number of background measurements.
•	4	No resampling.	
	5	Confidence = 0.693	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Comparison to Background Chromium (mg/L) Nonparametric Prediction Limit

<u>Step</u>	Equation	Description
1	PL = max(X) = 0.01	Compute nonparametric prediction limit as largest background measurement.
2	K = 13	Number of comparisons.
3	N = 34	Number of background measurements.
4	No resampling.	
5	Confidence = 0.686	Confidence level is based on N. K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Comparison to Background Chromium (vi) (mg/L) Nonparametric Prediction Limit

<u>Step</u>	Equation	<u>Description</u>
1	PL = max(X) = 0.02	Compute nonparametric prediction limit as largest background measurement.
2	K = 13	Number of comparisons.
3	N = 35	Number of background measurements.
4	No resampling.	
5	Confidence = 0.693	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Comparison to Background Copper (mg/L) Nonparametric Prediction Limit

Step	Equation	Description	
1	PL = max(X) = 0.05	Compute nonparametric prediction limit as largest background measurement.	
2	K = 13	Number of comparisons.	
3	N = 35	Number of background measurements.	
4	No resampling.		
-5	Confidence = 0.693	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).	

Worksheet 1 - Comparison to Background Ethylbenzene (ug/l)

Step	Equation	Description	
1	PL = max(X) = 3.4	Compute nonparametric prediction limit as largest background measurement.	
2	K = 13	Number of comparisons.	
3	N = 35	Number of background measurements.	
4	No resampling.		
5	Confidence = 0.693	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).	

Worksheet 1 - Comparison to Background Toluene (ug/l)

<u>Step</u>	Equation	Description	
1	PL = median(X) = 1.0	Compute nonparametric prediction limit as median reporting limit in background.	
2	K = 13	Number of comparisons.	
3	N = 34	Number of background measurements.	
4	No resampling.		
5	Confidence = 0.686	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).	

Worksheet 1 - Comparison to Background <u>Total xylenes (ug/l)</u>

Step Equation Description		<u>Description</u>
1	PL = max(X) = 5.8	Compute nonparametric prediction limit as largest background measurement.
2	K = 13	Number of comparisons.
3	N = 35	Number of background measurements.
4	No resampling.	
5	Confidence = 0.693	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Comparison to Background

Trichloroethene (ug/l) Normal Prediction Limit

Step	Equation	Description
1	X = sum[X] / N = 353.4 / 35 = 10.097	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((4086.22 - 124891.56/35) / (35-1))^{1/2}$ = 3.903	Compute background sd.
3	alpha = (1-conf)/K = (195)/117 = 4.274 x 10 ⁻⁴	Adjusted per comparison false positive rate. Pass initial (no resampling).
4	PL = \overline{X} + tS(1+1/N) ^{1/2} = 10.097 + (3.656*3.903)(1+1/35) ^{1/2} = 24.567	One-sided normal prediction limit (t is Student's t on N-1 degrees of freedom and 1-alpha confidence level).

Appendix F-3 Control Charts

Prepared by: Camp Dresser & McKee Inc.

1

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.

94 95 98 97 98 99 00 01 02 03 04 0

Year

Median ND ◊

Samples -

95% Limit ---

Prepared by: Camp Dresser & McKee Inc.

94 95 96 97 98 99 00 01 02 03 04 0

Samples -

95% Limit

Samples -

95% Limit —

Median ND ○

jan apr jul oct jan apr jul oct jan apr jul oct jan

Month / Year

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.

Prepared by: Camp Dresser & McKee Inc.